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Abstract

In this thesis, methods for radar-based environment perception from the vehicle

safety point of view are presented. The proposed methods comprise advanced topics

of radar-based target detection and tracking in dynamic pre-crash scenarios, as well

as ghost object identification.

The problem of a wandering dominant scatter point on the target surface and corre-

sponding challenge for accurate target tracking in low-range configurations is consid-

ered. The proposed method presents a procedure to estimate target wheel positions

and corresponding bulk velocities to serve as fixed scatter points on the target sur-

face. Input to this method are raw frequency modulated continuous wave (FMCW)

radar data. The technique spatially resolves the micro-Doppler signals, generated by

the rotating wheels of the target vehicle, to determine characteristic scatter points

on the target surface. A micro-Doppler parameter is defined to quantify detections

that are with high probability generated by the rotating target wheels. This group

of detections is processed to estimate the wheel position and corresponding bulk

velocities of the target, referred to as wheel hypotheses. The proposed method is

evaluated in dynamic driving scenarios, where the driver performs an emergency

evading action to avoid a collision.

Subsequently, the detected wheel hypotheses serve as input to a developed sequential

Monte Carlo (SMC)-based tracking framework, which is used to estimate the target

object static and dynamic states. Since the number of detected wheel hypotheses

varies, a random finite set (RFS)-based measurement model is used to incorporate

multiple wheel hypotheses detected for one extended target object. The tracking

performance is evaluated in critical evading scenarios using real vehicles as the tar-

get object.

In addition, the thesis emphasized the problem of ghost object generation due to

multipath propagation in pre-crash scenarios. Radar sensors, perceiving the imme-

diate vehicle environment, show an elevated ghost object presence due to a higher

probability illuminating potential reflection surfaces, e.g., road boundaries or build-

ings. At times, these ghost objects appear to be on a collision trajectory with the

ego vehicle, whereas the vehicles are in uncritical driving scenarios, e.g., an urban in-

tersection. In real-world driving scenarios, one target object may generate multiple

false-positive targets. Based on the propagation and reflection behavior of electro-

magnetic waves, a geometric multipath model is derived, illustrating the occurring

i



multipath reflections on real-world surfaces, e.g., buildings or road-bounding bar-

riers. The proposed geometric propagation model describes the relative positions

of the false-positive reflections and is validated with extensive real radar data. A

custom reflector target mounted on a platform, creating deterministic point targets

as dominant backscatter centers of a vehicle body, validated the different multipath

reflections and the overall accuracy of the model. Moreover, radar measurements

of a vehicle during an intersection scenario proved relevance to multipath reflection

behavior and confirmed the model assumptions.

Third, the relevance of skid scenarios with high magnitudes of side slip angles in pre-

crash phases is highlighted. A novel test methodology, to non-destructively transfer

vehicles with mounted surround sensors in skid situations, is developed and a sur-

vey analyzing a state-of-the-art radar sensor revealed the potential to improve object

tracking performance. A test vehicle, equipped with a state-of-the-art automotive

radar sensor and a reference sensor, was tested in real skid situations using a kick

plate and a standardized radar target. The test method utilizes the side slip angle

as a criticality criterion, which may be adjusted by the kick plate. Subsequently,

a novel, modified motion model is derived, estimating side slip angles in these skid

driving situations. The contribution emphasizes the estimation of horizontal vehicle

motion using the proposed model considering an additional lateral force applied to

the vehicle rear axle.

Based on these results, an extended Kalman filter (EKF) is designed to estimate

the target object relative position and velocity in skid scenarios. The evaluation

includes both the tracking and side slip angle estimations in real car tests using the

above-mentioned test method.
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Chapter 1

Introduction

1.1 Motivation

Radar systems have become widely employed in automotive applications over the

last few years. The digital automotive radar is particularly flexible, where the

frequency-modulated continuous wave-based radar exhibit superior properties con-

sidering the requirements for the environment perception task. Since the early

2000s, the radar sensor is used in automotive applications, e.g., adaptive cruise

control. Back then, both simultaneous high-resolution target range and velocity

measurement in multi-target situations was a critical requirement for such appli-

cations. The well-known waveforms had a considerably long acquisition time from

50−100 ms [RM01]. Continuous progress in the development of the frequency mod-

ulated continuous wave (FMCW) chirp sequence technique reduced the acquisition

time for a single chirp to the sub-milliseconds region. The ability to provide three-

dimensional target information consisting of range, radial velocity and azimuthal

direction in poor visibility and weather conditions make radar sensors indispens-

able in addressing the challenges of autonomous driving. The robustness to adverse

weather conditions [HKDB16, HDKR17] and the low costs led to large-scale integra-

tion of radar sensors in intelligent transportation systems [DKH+15]. FMCW radar

systems have successfully been applied to realize automotive applications such as

blind-spot detection, lane change assistance, smart cruise control, parking and anti-

collision warning systems. At this time, low-cost FMCW radars are preferred in such

automotive applications [JJL14].

However, the environment perception data may also be used to further enhance

the robustness or extend the functionality of passive or integral safety functions

[CCL11, RCY17]. In case a collision is unavoidable, passive or integral safety sys-

tems trigger reversible and irreversible restraint systems to mitigate occupant injury

or fatalities based on acceleration and pressure sensor information. Today, these sen-

sors rely on the contact between the collision partners in order to measure, e.g., a

deceleration and are thus able to execute safeguards after this initial contact mo-

ment.

The temporal activation moment of restraint systems may be shifted towards or

even before the contact moment by incorporating observations obtained by forward-
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1.2. THESIS OVERVIEW

looking sensors. Observing the local environment with forward-looking sensors and

utilizing the information for passive or integral safety applications migrates the high

requirements for activating restraint systems. Extensive requirements, e.g., with

minimal misfire rates, are necessary since the false activation of restraint systems

may restrict the driver from correctly executing the driving task and may place

oneself and others in dangerous or life-threatening situations. Hence, environment

perception for future safety systems requires high accuracy to minimize false activa-

tion of safety systems. The introduction of high-resolution radar sensor perceiving

short-range targets and the utilization for safety applications generate demand for

innovations to be developed and opened up the research area to further enhance

automotive safety systems.

This work focuses on radar-based environment perception in pre-crash scenarios.

The following chapters describe novel methods to detect and track potential colli-

sion targets, which are in short-range distances and on potential collision trajectories

or execute an evading maneuver, as well as a method to reproducibly test these sys-

tems. Moreover, the problem of automotive multipath propagation in uncertain

environments is considered.

1.2 Thesis overview

In the introducing chapter, the motivation and initial problems for the proposed

methods are presented. This section introduces each chapter and the original con-

tributions are summarized.

The second chapter covers the fundamentals of electromagnetic wave propagation

and gives a comprehensive derivation of the FMCW chirp sequence technique. The

experimental FMCW radar system and raw signal processing are introduced. For

the majority of this work, a configurable FMCW radar system is used to conduct

high-resolution radar measurements.

In the third chapter, a description of the Fresnel and Fraunhofer region and defini-

tions for radar target detections in short-range distances are given. Moreover, the

chapter provides a theoretical derivation of the micro-Doppler effect and connects

the effect with the radar sensor by introducing exemplary high-resolution radar data

of potential collision targets. In particular, the micro-Doppler effect generated by

rotating components, e.g., spinning wheels, is measured and evaluated to acquire

additional, valuable information about the target object. A method is proposed

to determine the position and corresponding bulk velocity of the target spinning

wheels, which serve as fixed and characteristic points on the vehicle surface. This

novel information serves as input for a subsequent target state estimation procedure

in the following chapter.

In comparison to the signals scattered from the object of interest directly back to

the sensor, target vehicle originated signals in close distance may be subject to

multipath propagation. These multipath signals are referred to as false-positive de-

tections. The transmitted electromagnetic wave gets potentially reflected by other
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objects or structure surfaces like, e.g., guardrails. The chapter addresses this prob-

lem by introducing a method to identify potential false-positive detections based on

multipath propagation.

Chapter four opens with a summary of a vehicle collision study, which revealed

skid driving situations as frequent and crucial pre-crash scenarios. These results

motivated the development of a reproducible and non-destructive test method in

skid scenarios to evaluate the performance of mounted environment sensors. Exten-

sive real vehicle tests using the novel test method motivated the design of a target

tracking system in skid driving situations. The ego-vehicle horizontal movement is

estimated using a novel motion model. This model considers an additional lateral

force to estimate a characteristic dynamic parameter, the side slip angle. The pa-

rameter serves as input to the designed filter stage.

Moreover, the chapter provides a brief but comprehensive overview of Bayesian state

estimation and introduces three fundamental filter designs: the Kalman filter (KF),

the extended Kalman filter (EKF) and the particle filter (PF). A subsequent particle-

filter stage incorporates the previously detected target spinning wheel hypotheses

is designed. The presented filter stage covers the signal processing from raw radar

sensor data to extended target state estimation in pre-crash scenarios. The particle

filter is evaluated on real experimental data where a target vehicle with a mounted

reference sensor is used to reconstruct safety-critical, dynamic evading maneuvers.

Chapter five summarizes the scientific contributions, emphasizes their practical value

for the proposed methods and provides an outlook for future work.
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1.3 Original contributions

High-resolution, short-range, radar-based detection and tracking of target vehicles,

that may be on a collision trajectory with the ego-vehicle, demand contrary require-

ments to state estimation than conventional environment perception. Generally

speaking, the main differences are the number of objects is drastically lower, ego

and target vehicle may be in high-dynamic or skid driving situations due to po-

tential evading maneuvers and targets may cause large numbers of detections per

object. A summary of the problems addressed in this thesis and original contribu-

tions coping with them is given in the following:

� Wandering dominant scatter point on the target surface and subsequent state

estimation: In this context, the dominant scatter point (PDS) is considered as

the target detection with the maximal intensity. The position of the domi-

nant scatter point strongly depends on the target relative yaw angle and the

angle under which the sensor illuminates the target. As the dominant scatter

point moves along the vehicle surface, an additional uncertainty in detection
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Figure 1.1: Three radar snapshots showing an illuminated target during an ap-
proaching sequence quantifying the wandering dominant scatter point (PDS) on the
vehicle surface. The colored circle indicates a fixed reference point (Pref) on the
target front bumper center. The target vehicle approaches the sensor on a zigzag
trajectory, causing yaw angle variations and eventually pass the sensor. The Eu-
clidean offset values range up to 1.2 m for snapshot t=52 and t=76 and drastically
increase when the target is partially within the sensor field of view at t=100.
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and tracking systems needs to be considered [KYY+15]. Fig. 1.1 shows three

radar snapshots during an approaching sequence illustrating the wandering

dominant scatter point on the vehicle surface. The colored circle indicates the

fixed virtual reference point (Pref) at the center of the target front bumper.

The target vehicle approaches the sensor on a zigzag trajectory and subse-

quently pass the sensor. The Euclidean offset values range up to 1.2 m for

snapshot t=52 and t=76 and drastically increase when the target is only par-

tially within the sensor field of view at t=100. These additional uncertainty

needs to be considered and require an appropriate state estimation method

to achieve high accuracy requirements, which is needed in safety applications

since crash severity estimation depend on the vehicle overlap [SB19].

The thesis at hand addresses this problem and proposes a method to determine

rotating target wheel positions and bulk velocities, which serve as characteris-

tic points on the vehicle surface and are input to a subsequent state estimation

procedure.

� Multipath propagation in pre-crash scenarios: Another challenge is the type

of propagation that the radar signal might take on the transmitting or receiv-

ing path, where radar receives not only the direct reflection of an obstacle but

also indirect temporally shifted reflection components from potential reflection

surfaces leading to false-positive detections [VHZ18, EHZ+17]. The sensor de-

terioration creates high demands on signal-processing algorithms concerning

the suppression of mispredictions. Thus, the radar receives not only the direct

reflections of an obstacle but also indirect temporally delayed reflection compo-

nents. This superposition can lead to range-dependent interference patterns,

which cause oscillating signal amplitudes of the received power [DKS+11]. In

addition to performance degradation of the direction of arrival (DoA) estima-

tion due to fading effects, multipath propagation can lead to the appearance

of mirrored ghost targets [VHZ18, EHZ+17, KHP+18].

To solve this problem, a geometric model is proposed to identify potential

multipath reflections and mirrored ghost targets.

� Target tracking in skid driving pre-crash scenarios: A conducted german in-

depth accident study (GIDAS) proved relevance for unstable and skid driving

situations in the pre-crash phase of a collision. According to the study, in 2015

occurred 754 collisions with injured occupants in Germany, where skid driving

situations were present [Fei16]. The majority of them were caused by speeding

in combination with inappropriate driver reactions.

For this purpose, a non-destructive test method to evaluate forward-looking

sensors in skid driving situations is developed and presented. The test method

reproducibly transfers the test vehicle in skid driving situations. Subsequently,

a survey using a test vehicle with a mounted state-of-the-art automotive radar

sensor is carried out. The sensor detects and tracks a standardized target

object during skid driving situations. Results revealed poor accuracy and

drastically decreased detection reliability [KHD+17, KBH+17].
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As a solution to this problem, an EKF-based tracking procedure is designed to

improve static object tracking in various skid driving situations. The tracker

utilizes a novel motion model, which considers an additional lateral force to

estimate dynamic parameters of the ego-vehicle.

A summary of the articles, which have been published during the period of doctoral

candidacy, is given in the following.
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Chapter 2

Automotive radar

This chapter introduces the general electromagnetic wave propagation principles

developed by Friis, presents a experimental radar sensor system and gives a compre-

hensive derivation of fundamentals of frequency modulated continuous wave (FMCW)

fast chirp sequence technique for automotive environment perception. For the ma-

jority of this work, a configurable FMCW radar system is used to conduct real radar

measurements. To further enhance the target detection, a thresholding and cluster-

ing procedure is presented, discussed and exemplary applied to real radar data.

2.1 Electromagnetic wave propagation

The isotropic electromagnetic wave propagation in free space between a transmitting

and receiving antenna can be modeled by Friis’ equations [Fri46]. The effective

antenna area, whether transmitting or receiving, to receive a linearly polarized,

plane electromagnetic wave is defined by

Aeff =
Pr
P0

, (2.1)

where Pr is the power available at the output terminals of the receiving antenna and

P0 is the power flow per unit area of the incident field at the antenna. Considering a

setup with an isotropic transmitting antenna and a receiving antenna with effective

area Ar, the power flow per unit area at a distance d from the transmitter is

Pr = AeffP0 = Aeff
Pt

4πd2
, (2.2)

where Pt is power fed into the transmitting antenna at its input terminals. Replacing

the isotropic transmitting antenna with a transmitting antenna with effective area

At will increase the received power by the ratio At/Aisotr with Aisotr = λ2/4π and

one obtains
Pr
Pt

=
ArAt
d2λ2

, (2.3)
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Figure 2.1: Reflection geometry and orientation of electric field strength of an inci-
dent and reflected plane wave for parallel (left) and orthogonal (right) polarization
© 2018 IEEE [KHP+18].

where λ is the wavelength. The relation between an antenna gain and the effective

antenna area can be described by [Rem16]

Gr,t =
4π

λ2
Ar,t, (2.4)

where Gr is the antenna receiver gain and Gt the antenna transmitter gain. Thus,

the received power between a transmitting and receiving antenna in a distance d

can be expressed by
Pr
Pt

= GrGt

(
λ

4πd

)2

. (2.5)

In automotive environment perception applications, the electromagnetic wave is

likely to get reflected on obstacles or surfaces in the sensor field of view (FoV) and

travels back to the sensor.

In real-world environments, where, e.g., buildings, other vehicles or barriers are

present, the transmitted energy gets either absorbed, transmitted through the ma-

terial, reflected (specular reflection) or scattered. The reflectivity and absorption

properties of the object depend on the polarization of the electromagnetic wave. The

polarization is defined as either parallel or orthogonal to the reflection plane gener-

ated by the direction of incidence. For parallel polarization, the incident radiation

of the E-field is oriented parallel to the plane of incidence, and for perpendicular

polarization, the E-field is perpendicular to the plane of incidence. For vertical

obstacle surfaces, e.g., other cars or walls and horizontal propagation of the radar

beam, horizontal polarization is parallel to the plane of incidence while vertical po-

larization is perpendicular.

Fig. 2.1 shows the corresponding geometric relations. The reflection coefficient de-

pends on conductivity, angle of incidence, permittivity, roughness of the surface

and the polarization of the incident wave. A general reflection coefficient R can be

defined by

R = Rs · ρ, (2.6)
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where Rs is the smooth surface reflection coefficient and ρ is the scalar surface

roughness attenuation factor. The parallel reflection coefficient Rs‖ and perpendic-

ular reflection coefficient Rs⊥ are given by the Fresnel equations

Rs‖ =
sin β −

√
ε− cos2 β

sin β +
√
ε− cos2 β

, (2.7)

Rs⊥ =
ε sin β −

√
ε− cos2 β

ε sin β +
√
ε− cos2 β

, (2.8)

where β is the angle of incidence and ε is the complex permittivity given by

ε = ε0εr − j
σ

ωRefl

, (2.9)

where ε0 is the permittivity of vacuum, εr is the relative dielectric constant, σ the

conductivity of the reflecting surface and ωRefl the angular frequency. The roughness

attenuation factor for ρ is given as [CL82]

ρ2 = e−2δ, with δ =
4π∆h

λ
sin β, (2.10)

where ∆h is the standard deviation of the normal distribution of the surface rough-

ness.

In real-world environments, the particular roughness features are usually vaguely

known and depend on obstacles geometries. Thus, objects classification may be re-

alized by evaluating the radar cross section (RCS) parameter, a property of a radar

target to represent the echo signal returned to the radar sensor [HAS08]. The RCS

parameter is defined for large d (d→∞) as

σ = lim
d→∞

{
4πd2 |Es|2

|Ei|2
}
, (2.11)

where |Es| and |Ei| are the scattered and incident electric fields, respectively. The

RCS can be considered as the objects effective scattering cross section, which also

depends on the relative azimuthal sensor-to-object configuration and the wavelength

λ. This value can also serve as a simple obstacle identifier. Assuming small RCS

values for small targets, e.g., pedestrians, and larger RCS values for larger objects,

e.g., cars or trucks.

Hence, the final received and transmitted power ratio can be expressed, considering

the RCS as effective area and twice the sensor to object electromagnetic wave travel

distance, as

Pr
Pt

= GrGt
λ2σ

(4π)3d4
, (2.12)

for automotive radar applications.
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2.2. FMCW RADAR SYSTEM

2.2 FMCW radar system

To the best of the author’s knowledge, the first recorded idea to utilize a radar sys-

tem in the automotive safety context appeared in 1955 [Fon55] and describes a safety

system to decelerate the vehicle based on radar environment information. It took

four more decades to realize the first driver assistance function in series-produced

vehicles where the radar system was adaptively controlling cruise speed depending

on vehicles in the local environment [WHW09]. Since then, the number of vehicles

and driver assistance systems, including the number of radar sensors, grew tremen-

dously.

Nowadays, low-cost FMCW radars are preferred in automotive applications [JJL14].

Vehicles are equipped with multiple radar sensors employing data fusion. Thus,

multiple radar sensors cover a wider sensor FoV than a single radar sensor can cap-

ture and give a comprehensive overview of the surrounding scene. According to

[WHW09], one can group radar functions in comfort and safety applications.

Comfort applications aim to minimize the workload of the driving task by partially

or fully automating the vehicle control, e.g., adaptive cruise control (ACC), where

the system sets the cruising speed to the desired level or adapts it to the actual

traffic situation. Next generations of comfort applications intend to maximize the

vehicle driving control towards fully-automated driving where the system is capable

of handling the vehicle in every driving situation.

Oscillator

Rx4

Rx1

Rx2

Rx3

FPGA

RPN7720PL
Tx1

Tx2

Amplifier

RRN7745PL

Amplifier-/
Mixer-
Stage

RTN7735PL

Rx16

A/D

FilterAmplifier

AFE5801

Clock

Signal I/O

Digital Interface

RCC1010

Figure 2.2: Hardware configuration for a FMCW radar system with two transmit
antennas (Tx) and multiple receive antennas (Rx).
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Safety applications categorize into active safety and passive safety, where the first

group attempts to avoid collisions by longitudinal and lateral intervention in vehicle

control. The latter group of system mitigates crash severity, e.g., occupant injuries,

of unavoidable collisions. These systems trigger cascaded warnings and eventually

activate reversible and irreversible restraints systems, e.g., belt tensioners or airbags

in various applications, e.g., emergency brake assist.

2.2.1 Radar system platform

The presented FMCW-radar block diagram is based on the INRAS technical reports

and manuals of the experimental radar sensor [Had19]. Fig. 2.2 shows the main

components of the experimental FMCW radar. It consists of two transmit antennas

and 16 receive antennas implemented as a patch antenna array. The 16 receive

antennas form a uniform linear array (ULA) with element spacing dant. The field

programmable gate array (FPGA) controls each component and serves as an in-

terface to the measurement computer via its signal input/output port forwarding

recorded radar data. An oscillator (RTN7735), accessed through a digital interface

(RCC1010), including a phased-locked loop (PLL) frequency control in conjunction

with a dual power amplifier stage (RPN7720PL), generates the arbitrary chirp se-

quences as FMCW transmit signal. The activation sequence can be programmed

with the trigger and timing unit implemented in the FPGA. The receive path is

realized with four receiver components (RRN7745) connecting the 16 receiving an-

tennas. The incident electromagnetic wave is captured by the receiving antennas,

down-converted to the base-band and amplified (RRN7745PL). Subsequently, the

incoming signal is filtered, amplified again and sampled using an analog-digital con-

verter (ADC) with an adjustable sampling frequency (AFE5801). Table 2.1 shows

system parameters for an exemplary short range radar (SRR) configuration. Experi-

mental results using these or similar settings are presented in the following sections.

Table 2.1: Exemplary radar configuration

Parameter Value

Carrier frequency fc 77 GHz
Bandwidth B 2 GHz
Sampling frequency 10 MHz
Chirp duration 51.2µs
Samples per chirp 512
Number of chirps per interval 512
Chirp repetition interval 60µs
Range resolution 0.075 m
Doppler resolution 0.06 m

s
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2.2.2 Chirp sequence data model

The description of the FMCW radar chirp sequence measurement model is based on

the work of Costa et al. [CC84] and Barrick et al. [Bar73]. In their contributions, the

authors presented the fast chirp sequence FMCW method and how, both time-delay

(range) and Doppler (radial velocity) information, can be extracted unambiguously.

The waveform emitted by the transmitting antenna, generated from a voltage con-

trolled oscillator, is a linear frequency modulated pulse referred to as sweep or chirp.

The signal can be described for −Tr/2 < t < Tr/2 as

ET (t) = E◦T cos [φT (t)] , with φT (t) = 2πfct+ πBfrt
2, (2.13)

where E◦T is the amplitude, fc is the carrier frequency, fr is the pulse repetition

frequency, Tr = 1/fr is the chirp duration, B is the bandwidth, and φT is the trans-

mitting signal phase. The signal is phase-coherent and periodic from one repetition

interval to the subsequent. The instantaneous frequency fT (t) is the derivative of

the phase and therefore

fT (t) =
1

2π

dφT (t)

dt
= fc +Bfrt. (2.14)

Fig. 2.3 shows the transmitted, successive frequency chirps and the delayed and

Doppler-shifted received signal due to a distant, moving target. The target range

R(t) is a function of time as R(t) = R0 + vt where v is the target velocity along

line of sight (LoS). The received signal, scattered back from target to the sensor, is

a replica of the transmitted signal delayed in time by td with td = 2R/c, where c is

the speed of light. If the target is moving, its frequency is shifted accordingly. The

received signal, shown in Fig. 2.3 as the dashed curve, can be expressed as

ER(t) = E◦T (t− td) = AR cos
[
2πfc(t− td) + πBfr(t− td)2

]
, (2.15)

where AR is the amplitude of the echo signal. The received signal is mixed with a

replica of the transmitted signal, which is mathematically represented by a multi-

plication of both signals. Using the addition theorem

cos(φT (t)) · cos(φT (t− td)) =

1

2
[cos(φT (t)− φT (t− td)) + cos(φT (t) + φT (t− td))] , (2.16)

where the first term produces the signal of interest at low frequencies while the

second term contains high frequencies and is therefore filtered by the bandpass.

Thus, the term cos(φT (t)− φT (t− td)) is left for analysis. The signal with all phase

terms is

xIF (t) = XIF cos
[
2πfct− 2πfc(t− td) + πBfrt

2 − πBfr(t− td)2
]
, (2.17)

where XIF is the amplitude of the mixed signal. The mixture of the two frequencies
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Figure 2.3: Transmitted and received signal, which is delayed in time and Doppler-
shifted, due to reflection on a distant, moving target.

produces a dechirped, intermediate signal xIF (t). The frequency fI(t), shown in

Fig. 2.4, consists of the two frequencies indicated in Fig. 2.3:

f1 =
1

2π

d

dt
[φT (t− td)− φT (t)] , (2.18)

f2 =
1

2π

d

dt
[φT (t− td)− φT (t+ Tr)] . (2.19)

The intermediate signal can be represented as the sum of pulse sequences as shown

in Fig. 2.4. The signal x1(t) is at frequency f1 with pulse width T = Tr − td and

x2(t) is at frequency f2 with pulse width T = td. The latter frequency will be filtered

since f2 � f1 and is therefore not of interest.

After a re-centering the time origin to the middle of the first pulse, the derivation

continues within a chirp interval −Tr/2 < t < Tr/2. Since the target is moving, the

frequency and phase from pulse to pulse is slightly changing which is key to the sub-

sequent velocity derivation. The inter chirp time is denoted as ti. Further phase sim-

plifications for the first pulse are t = ti and td = 2R/c = 2R0/c+2vt/c = t0 +2vti/c

where t0 = 2R0/c is the initial delay of the signal.

Hence, the phase of the down-converted and filtered signal xIF (t) is φI(ti) = φT (ti−
td)− φT (ti) or

φI(ti) =

(
−2πfct0 + πBfrt

2
0

)
+ 2π

[
−2

(
v

c

)
fc +Bfrt0

(
2v

c

)
−Bfrt0

]
ti

− 2πBfr

(
2v

c

)[
1−

(
v

c

)]
t2i , (2.20)

with three contributions to the phase. The quadratic term t2i can be neglected since

it is small with respect to the linear and constant terms, if one applies radar settings

similar to Tab. 2.1. The second term in the linear factor is small with respect to the
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Figure 2.4: Frequency and amplitude visualization of the received signal after
dechirping.

first one under consideration that for all relevant cases the target velocity is small

compared to speed of light v
c
� 1 and the Doppler-shift is negligible with respect to

bandwidth B. Hence, the intermediate phase simplifies to

φI(ti) ≈ φ0 − 2π

[(
2v

c

)
fc +Bfrt0

]
ti, (2.21)

and accordingly, within the first pulse the frequency is

fI =

(
2v

c

)
fc︸ ︷︷ ︸

velocity

+Bfrt0︸ ︷︷ ︸
range

, (2.22)

where the first term is due to target velocity and the second term due to time delay,

respectively range, to the target. Note that it is not possible to separate range and

target velocity by measuring frequency fI within one single pulse.

Consequently, the phase from the n-th pulse is examined to obtain the velocity by

setting the interval (2n − 1)Tr/2 < t < (2n + 1)Tr/2 where n is the pulse number.

We assume that the first pulse is centered at t = 0. The time delay td to the target

is then

td = 2R/c = 2R0/c+ 2vt/c = t0 +
2v(nTr + ti)

c
, (2.23)
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where the time to the n-th pulse is nTr. Again, the time is substituted into the

phase with

φIn(ti, n) =− 2πfct0 − 2πfc

(
2v

c

)
ti − 2πfc

(
2v

c

)
nTr

+ πBfr

[
t0 +

(
2v

c

)(
nTr + ti

)2]
− 2πBfr

[
t0 +

(
2v

c

)(
nTr + ti

)]
, (2.24)

and after expansion and elimination of small terms the phase can be expressed as

φIn(ti, n) = φ0 − 2πfc

(
2v

c

)
nTr − 2π

[(
2v

c

)
fc +Bfrt0 +

(
2v

c

)
Bn

]
ti, (2.25)

and the frequency fIn in the n-th pulse is

fIn =

(
2v

c

)
fc +Bfrt0 +

(
2v

c

)
B n. (2.26)

The frequency fIn in the n-th pulse is identical to that in the first pulse (Eq. 2.22)

except for the third term (Eq. 2.26). The third term describes the target motion

from pulse to pulse, the range R0 + vnTr, respectively.

Two effects occur within the pulse, first, its width T = Tr−td changes slightly due to

chirp dependence in td, and secondly, its phase changes from pulse to pulse, which

is the basis for the velocity observation. Note that, the phase term (2v/c)Bn in

Eq. 2.25 can be neglected since it describes the phase change due to target velocity

within the n-th chirp, which is small compared to the other terms. The received

signal can be expressed as

xIF (ti, n) = XIF cos 2π

{[
fc

(
2v

c

)
+
B

T

(
2R0

c

)]
︸ ︷︷ ︸
frequency present during one chirp

ti

+ nfc

(
2v

c

)
Tr︸ ︷︷ ︸

chirp phase
change due to velocity

+ fc

(
2R0

c

)
︸ ︷︷ ︸
constant phase

}
. (2.27)

Accordingly, the velocity can be obtained evaluating the phase rate of change from

one sweep to the subsequent. The target range can be determined from knowing

the phase rate of change during one sweep. It is notable that fc does not change

greatly from sweep to sweep and that fluctuations of the constant phase term do

not interfere with or mask the nfc(2v/c)Tr term. The signal enables the estimation

of range and velocity for arbitrary, detectable targets.

In real-world environment perception applications, one is also interested in the rel-

ative angle. A popular method for angle estimation is direction of arrival (DoA)

technique. Due to the azimuthal angle under which the target is illuminated, a path
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Figure 2.5: Electromagnetic wave for an exemplary incidence angle Θ.

difference at the ULA receives antenna ensues and thus, a detectable phase difference

occurs. An overview of DoA methods and the basis for this subsection is given in

[God97].

The phase difference is caused by the target azimuth angle when the reflected elec-

tromagnetic wave is, depending on the angle, either arriving first on the left or right

end of the ULA antenna array. The sampled signal across all antenna elements is

linear and its phase depends on the angle of incidence. Fig. 2.5 shows the path

difference of the incident wave. An exemplary ULA, consisting of four equidistant

placed receiving antennas, is subject to the illumination of a far-field wavefront.

The wavefront impinges first on the left antenna element Rx1 and subsequently on

elements Rx2...Rx4.

Hence, each antenna receives the signal as a superposition of sinusoidal terms for

each target k with corresponding amplitude ai and phase which can be expressed as

a(l) =
K∑
k=1

aie
−j2π l·dant

λ
sin(ΘK). (2.28)

where Θk is the azimuthal angle of target k and l = 1, ..., L is the corresponding re-

ceiver antenna. The angular resolution depends on the number of receive antennas.

Hence, the full three-dimensional complex radar signal of a superposition of K tar-

gets is given by

xIF (ti, n, l) =
K∑
k=1

ξk e
j2π( 2fcR0

c )︸ ︷︷ ︸
const. phase

· ej2π
(
fc2v
c

+
2RkB

cT

)
ti︸ ︷︷ ︸

range term

·

e
j2π

(
nfc2vk

c

)
Tr︸ ︷︷ ︸

velocity term

· ej2π
(
fcdant sin(Θk)

c
(l−1)

)︸ ︷︷ ︸
azimuth term

. (2.29)

The amplitude parameter ξk depends on path loss attenuation 1/R4 [Fri46], addi-

tional attenuation due to adverse weather conditions [HKDB16, HDKR17] and on

target parameter like RCS. The amplitude can also be subject to multipath reflec-

tions that occur on road surfaces between the sensor and the target object, where

the phase differences interfere with each other and may attenuate the received power

level and degrade target detection probability [WHC16].
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2.2.3 Signal processing

The down-converted electromagnetic wave captured at the receive antennas is sam-

pled at high frequencies, e.g., 10 MHz, leading to high data rates that need to be

processed. The radar signal processing aims to extract information of interest from

the RF-signal in the time domain to generate a target list. Therefore, the range,

velocity and azimuthal angle for every target, detected via thresholding and cluster-

ing, is determined. The pre-processed data are subject to a successive association

and tracking procedure, estimating additional object parameters, e.g., target accel-

eration. These objects are the basis for current and future safety and automated

driving functions.

For this work, the chirps from one coherent processing interval (CPI) are subject

to three successively applied fast Fourier transform (FFT) on chirps, frames and

arrays. Fig. 2.6 shows an exemplary radar data cube. The signal processing tech-

niques are presented in this section and based on [CC84, Bar73]. The derivation of

the continuous signal phase from Eq. 2.29 is discretized and rewritten with neglected

constant phase term. Assuming constant target velocity during a single coherent

measurement interval and fast time sampling with ti = Tsnr and Tr = Tcnv to

ϕIF (nr, nv, l; r, v,Θ) ≈ 4Rα

c
Ts︸ ︷︷ ︸

Fr

nr +
2fcn

c
Tc︸ ︷︷ ︸

Fv

nv +
fcdant sin(Θ)

c︸ ︷︷ ︸
FΘ

(l − 1), (2.30)

for

nr = 1, ..., Nr, nv = 1, ..., Nv, l = 1, ..., L, (2.31)

where α = B/(2T ), nr, nv and l are corresponding sample, pulse, and antenna

variable, Nr, Nv, and L are the maximum number of samples per chirp, chirps per

CPI and number of antenna, respectively. The corresponding frequencies Fr, Fv and

FΘ directly depend on the parameters of interest [Win14]. The radar data can be

arranged in a three-dimensional radar data cube in favor of the following signal

processing, see Fig 2.6. A practical method for frequency estimation is spectrum

analysis using a discrete Fourier transform (DFT) considering the sample and pulse

variable computed by a FFT,

XIF (ir, iv, l) =
L−1∑
l=0

Nv−1∑
nv=0

Nr−1∑
nr=0

wΘ(l)wv(nv)wr(nr) xIF (nr, nv, l)

· e−j2πirnr/Nr e−j2πivnv/Nv e−j2πiΘl/L, (2.32)

for

ir = 0, ..., Ir − 1, iv = 0, ..., Iv − 1, iΘ = 0, ..., L− 1, (2.33)

where ir, iv, and iΘ are range, velocity and azimuth angle cell indexes of the data

cube, wr(nr), wv(nv), and wΘ(l) are normalized window functions of lengths Nr, Nv,
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Figure 2.6: Radar data cube structure arranges range-corresponding samples from
each chirp in rows (first dimension), velocity-corresponding samples in lines (second
dimension) and number of antennas in the third dimension for a coherent radar
measurement cycle. A snapshot at ir,k, iv,k, and iΘ,k is indicated as solid, black cell
within the full data cube.

and L respectively. Windowing is employed to suppress leakage which is a result

of the side lobe structure of the spectrum due to finite data length. A possible

solution applies, e.g., a Hann window, to weight the data, reduce discontinuities in

the data and thereby reduce the side lobe in the frequency domain at the costs of a

wider main lobe [CC84]. The DFT parameters ir, iv, and iΘ relate the normalized

frequency values to the parameter of interest by

ir ' FrNr =
4αR

c
TsNr, (2.34)

iv ' FvNv =
2fcvn

c
TcNv, (2.35)

iΘ ' FΘ(L− 1) =
fcdant sin(θ)

c
(L− 1). (2.36)

The down-converted, band-pass filtered and sampled IF -signal measurements are

real-valued and can therefore be considered as Ir < Nr/2. The values of the data

cube cells are complex-valued after application of the first Fourier transformation,

so that the Doppler spectrum can be considered for all variables Iv = Nv. The cell

widths, or resolution for each dimension, can be expressed with κ as wavenumber

as the inverse cell parameter of interest

Mr=
c

4αTsNr

, Mv=
c

2fcnTcNv

, MΘ= arcsin

(
1

κLdant

)
. (2.37)
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2.2.4 CFAR thresholding and clustering

After frequency estimation using a 3D-FFT, the resulting periodogram is subject

to a constant false alarm rate (CFAR) method, which is used for power detection

within the data cube and to encounter time-varying noise and interference statistics.

Generally, CFAR techniques compare the received signal amplitude to a threshold.

Usually, an adaptive threshold is applied to reflect the local clutter situation due to

the reflections from, e.g., rain, small objects, random noise from ground reflections

or general sensor noise. The intention is to keep the false alarm probability over the

entire measurement space constant and still detect all present targets.

Established CFAR methods are cell averaging constant false alarm rate (CA-CFAR),

cell averaging with greatest of constant false alarm rate (CAGO-CFAR), and ordered

statistic constant false alarm rate (OS-CFAR). CFAR systems usually use the sliding

window technique. The first two methods use a split neighborhood, e.g., a cer-

tain number of range cells, where the arithmetic mean of the amplitude is obtained.

Therefore, the first step is to determine the mean clutter power level Z for surround-

ing cells followed by multiplication with a scaling factor T , resulting in a threshold

value TZ. After comparing the actual cell to this threshold, the cell is either a

detection, when the cell value is above the threshold, or no detection when the cell

value is below the threshold.

The main difference between CA-CFAR and CAGO-CFAR is that the former is based

on the assumption of a uniform clutter situation in the entire neighborhood area,

whereas the latter makes allowance for clutter edges occurring within the reference

area. The performance evaluation in [Roh83] considers two clutter backgrounds:

uniform (stationary) and non-uniform clutter within the reference window. In dense

target situations, e.g., where two targets are closely spaced in range and azimuth,

the echos of both may be within one reference window leading to an interpretation

of one target as clutter power and hence, leaves one or even both targets undetected.

To overcome the assumption of an uniform statistic in the reference window, Rohling

et al. proposed the ordered statistic CFAR (OS-CFAR) method, yielding superior

results in contrast to CA-CFAR processing [Roh83, SV00]. The method performs

a rank-ordering of the values encountered in the neighborhood area according to

their magnitude. The central idea of an OS-CFAR is to select one certain value

Xk, k ∈ 1, 2, ..., N from the rank-ordered amplitude sequence in the reference win-

dow X1 ≤ X2 ≤ ... ≤ XN , where the indices indicate the rank-order number. X1

denotes the minimum and XN the maximum value. Subsequently, an estimate Z

for the average clutter power observed in the reference window is generated.

The advantage of OS-CFAR method is if one or multiple targets are present, the

threshold value is limited by a predefined number of neighboring cells. Therefore

the number of detections per present target is higher than with a CA-CFAR method

enabling a high-resolution radar image. In this work, the OS-CFAR method is used

to detect targets in all three dimensions: range, velocity and azimuth angle.

After applying the OS-CFAR procedure on the radar data cube, a clustering proce-
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A

N

B

B N

Figure 2.7: Exemplary data points, clustered using DBSCAN algorithm and Eu-
clidean distance. Results are indicated by colors: core points (red), border points
(orange), noise points (blue).

dure is applied to cluster detections originating from one extended target, e.g., a

vehicle. For subsequent object parameter estimation and tracking, merely the de-

tections which can be assigned to one object are of interest. Therefore a well-known

and robust clustering procedure density-based spatial clustering of applications with

noise (DBSCAN), developed from Ester et al. [EKS+96], is applied and is briefly in-

troduced.

In the automotive context, clustering algorithms are usually used to group data

obtained using the sensor for class identification. The radar data, measured from

arbitrarily shaped objects, depend mainly on sensor-to-object configuration, range,

reflection surface and material. Hence, the multi-dimensional clusters may be arbi-

trary shaped and the domain knowledge shall be minimal, e.g., the number clusters

in the data is unknown.

Established clustering techniques rely on similarity, e.g., in the same cluster, which

shall be as similar as possible. On the other hand different clusters shall be as differ-

ent as possible. Clustering algorithms can be divided into 9 categories defined in the

parameter they utilize [XT15]. Popular algorithms are, e.g., based on a partition,

where they construct a partition of a database D of n objects into a set of k clusters

as k is an input parameter for these algorithms. Hence, some domain knowledge is

required, which is usually not available for automotive applications [EKS+96].

Another conventional clustering algorithm is based on hierarchy, which aims to cre-

ate a hierarchical decomposition of D. The hierarchical decomposition is represented

by a dendrogram, which can be interpreted as a tree that iteratively splits D into

smaller subsets until each subset consists of a single object. In such a hierarchy, each

node of the tree represents a cluster of the database D. Contrary to partitioning

algorithms, hierarchical algorithms do not need the number of clusters k as input.

Instead, the demand for a termination condition, which has to be defined indicat-
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Figure 2.8: Exemplary real radar data visualization of the presented raw data signal
processing including FFT, CFAR, DBSCAN and detection list representation for an
approaching vehicle.
Top left: Raw range-Doppler snapshot after FFT application. Top right: Range-
Doppler snapshot after CFAR filtering. Bottom left: Range-Doppler snapshot after
DBSCAN. Bottom right: Final range-Doppler snapshot data as detection list. Each
data point represents a detection exceeding the CFAR-threshold and is assigned to
the extended object.

ing when the merge or division process should be terminated, e.g., when a minimal

critical distance Dmin between clusters is deceeded.

A third clustering approach is based on the density between data points. The key

idea of density-based clustering is that for each point of a cluster, the neighborhood

of a given radius has to exceed some threshold number of points. The shape of a

neighborhood is determined by choice of an adequate distance function, where this

approach works with any distance function so that an appropriate function can be

chosen for some given application [EKS+96].

The DBSCAN procedure groups detections based on the maximum distance param-

eter and the minimum number of data points within this distance (tuning parame-
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ters), into three categories: core points, border points, noise points. Fig. 2.7 shows

an exemplary data set and the result of the DBSCAN. The initial point is arbitrarily

selected, e.g., A, and retrieves all points density-reachable from this point concern-

ing the two tuning parameters. This point is set as a core point if the conditions

using the tuning parameters are fulfilled and a cluster is yielded, whereas if the point

is a border point, e.g., B, no points are density-reachable from this point and the

next data point is analyzed. If there is not a single point within the distance tuning

parameter, then this point is tagged as a noise point.

In this work, the DBSCAN algorithm is used to identify and group dense radar detec-

tions, originating from one object. Since target vehicles are assumed to be moving

within this work, the DBSCAN procedure is applied in the range-velocity dimensions

of the radar data. Additional or extended DBSCAN iterations considering the angle

information may be beneficial to the clustering result.

2.2.5 Real radar data example

Fig. 2.8 shows the signal processing chain starting with an 2D-FFT to process one

data frame. The top left plot in Fig. 2.8 presents the 2D-FFT result showing the

target vehicle with various velocity components. The top right plot in Fig. 2.8

shows that the signal-to-noise ratio (SNR) of the target is increased due to OS-CFAR

procedure application compared to the previous processing step. The clustering of

detections that originate from the target is archived using the DBSCAN procedure.

The result is shown in the bottom left plot in Fig. 2.8. The clustered detection list

and final result is shown in the bottom right plot in Fig. 2.8 as a high-resolution

detection list of the approaching vehicle.

Overall, an enhanced target detection performance may be achieved if the data

processing steps FFT, CFAR and DBSCAN are applied as in the proposed sequence.

Variations and multiple applications of one or more processing steps may increase

the target detection performance, and, on the other hand, may decrease algorithm

run-time. However, for this work the proposed raw data signal processing procedure

is emphasized in terms of computational complexity, algorithm run-time and target

detection performance.
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2.3 Summary

This chapter presents the fundamental electromagnetic wave propagation in free

space and introduces the FMCW radar system, which is used in multiple studies

within this work. The FMCW radar operates using the chirp sequence operation

mode where fast subsequent chirps are sent, received, down-converted to the base-

band and processed. The chapter provides a comprehensive derivation of the FMCW

chirp sequence operation mode. The information of targets, obstacles and free spaces

is available after a spectral analysis, e.g., using a FFT. Additional signal processing

effort is made using thresholding (OS-CFAR) and clustering procedure (DBSCAN) to

enhance target detection performance and to assign detections to one target object.

A comparison of the proposed procedures is given. At last, the proposed signal pro-

cessing procedure proves sufficient target detection performance by an exemplary

application on a real radar data snapshot for an approaching vehicle on a collision

trajectory.
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Chapter 3

Target detection

This chapter presents the principles of electromagnetic wave properties in the near-

and far-field, corresponding Fresnel and Fraunhofer region. In close sensor-to-target

configurations, the micro-Doppler effect of vibrating or rotating target components,

e.g., spinning wheels, is detectable and provides additional, valuable target informa-

tion. The micro-Doppler effect for spinning wheels is derived and real radar data

snapshots present the measured micro-Doppler effect with a high-resolution radar

sensor. These Doppler signals are subject to a spinning wheel position and corre-

sponding bulk velocity estimation method based on spatially resolved micro-Doppler

spectra. This novel method is presented and evaluated in a high dynamic evading

maneuver using a test vehicle as target. The presented method serve as input for the

subsequent chapter on object tracking. The wheel detection method copes with the

wandering dominant scatter point of the target vehicle, as described in the original

contributions section 1.3.

In comparison to the directly backscattered signals from the target object back to

the sensor, target vehicles in close distance may be additionally subject to multipath

propagated signals. The transmitted electromagnetic wave potentially gets reflected

by other objects or structure surfaces like, e.g., guardrails as described in the original

contributions section 1.3. To address this problem, this chapter introduces a method

to identify potential false-positive detections based on multipath propagation.
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3.1 Background

This section introduces the Fresnel and Fraunhofer region and describes its fun-

damental criterions. The summary given is based on the work of Mahafza et al.

[Mah05] for phased array antennas. Besides, the section introduces the micro-

Doppler effect, which is generated by vibrating or rotating parts of the moving

target, e.g., target vehicle wheels.

3.1.1 Fresnel and Fraunhofer region

Depending on the distance from the transmitting antennas to the target, three

distinct regions are identified: the near-field, Fresnel and Fraunhofer regions. In

the near-field and Fresnel regions, the emitted rays have spherical wavefronts that

correspond to equiphase wavefronts, whereas in the Fraunhofer region, the wavefront

can be locally represented by plane wavefronts. Usually, near-field and Fresnel

regions are of little interest for most radar applications, whereas within this thesis,

the Fresnel region is of interest due to the close sensor-to-target distance in pre-crash

scenarios. Most radar applications operate in the Fraunhofer region, which is also

referred to as the far-field region.

Fig. 3.1 show a spherical wavefront to derive the far-field criterion. The criterion

determines the minimal distance for given antenna apertures where plane wavefronts

form. Therefore, one consider a radiating source S that emits spherical waves. A

receiving antenna of length lant is at distance r from the radiation source. The

phase difference between the spherical wave and a local plane wave at the receiving

antenna can be expressed as the distance δr, which is given by [Mah05]

δr = SA− SB =

√
r2 +

(
lant

2

)2

− r, (3.1)

and due to the fact that r � lant in the far-field the expression can be approximated

via binomial expansion by

δr = r

√1 +

(
lant

2r

)2

− 1

 ≈ l2ant

8r
. (3.2)

It is conventional to assume plane waves when the distance δr corresponds to less

than 1/16 of a wavelength or more precisely

δr =
l2ant

8r
≤ λ/16. (3.3)

A expression for the far-field criterion is then

r ≥ 2l2ant

λ
, (3.4)
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Figure 3.1: Spherical wavefront geometry to derive the far-field criterion.

where it is notably that the far-field function depends on both the antenna size and

operating wavelength. For most measurements in this thesis the INRAS radar log

with an operating frequency of 77 GHz and an receiver patch antenna aperture of

approximately 0.15 m is used. According to the far-field criterion the Fresnel region

ends and Fraunhofer region starts at 12 m.

3.1.2 Target detection properties

The previous chapter introduced the radar raw data signal processing up to a list

of detections per present object. For the sake of clarification, a brief definition of

target assumptions is given in this section. The high radar resolution in range, ve-

locity, and azimuthal angle may lead to multiple detections per object. More than

one detection per object yield additional information about the target, which is of

major interest in this thesis. The different target definitions are based on [Kel17].

The number of possible detections per object depend on the object geometry with

respect to the sensor resolution. Every range, velocity, and azimuth bin may contain

one detection. If the physical dimension of the object is smaller than the resolution

in the three dimensions, the object causes one detection and can be regarded as

point target. Point targets are the simplest target representation type.

If the target dimensions exceed either range, velocity, and azimuthal resolution and

detections of the same object are distributed over multiple neighboring detection

bins, the target can be referred to as extended object. Extended target state estima-

tion, based on multiple detections of, e.g., radar or lidar data, is of major interest

since the sensor resolution is continuously increasing, e.g., [HLS12, HSSS12]. An

extended target may cause only one detection and therefore change from extended

target to a point target, e.g., due to increasing distance between sensor and target.

In contrast, the target may have a small size with respect to the sensor resolution

and, therefore, only possesses an extend in the velocity dimension. The target is
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referred to as kinematic extended object, e.g., pedestrians in specific sensor-to-target

configurations. The kinematic extension is induced either by the micro-Doppler ef-

fect or due to multiple radial velocities in the equivalent range and angle bin.

In most of the measurements and test runs carried out in this thesis, the targets

were either real vehicles or retroreflectors, extended and point targets, respectively.

A retroreflector consists of three mutually perpendicular, intersecting flat surfaces,

which reflects waves directly back towards the source.

3.1.3 Micro-Doppler effect

Besides the number of detections, another physical effect is of major interest within

this thesis for close target detection – the micro-Doppler effect. The micro-Doppler

effect was originally introduced in the context of incoherent laser systems [ZRH98].

According Chen et al. [CLHW06], the micro-Doppler effect occurs when the target

or any structure on the target has mechanical vibrations or rotation in addition

to its bulk translation. An additional frequency modulation may be induced on

the returned signal that generates sidebands about the target Doppler frequency

shift [CLHW03, PLH92]. This includes returned radar signals such as propellers of

a fixed-wing aircraft and rotating wheels of a vehicle. Micro-Doppler signals may

serve as additional target features. The fundamental micro-Doppler analysis was

presented by Chen et al. [CLHW03, CLHW06], where the authors analyzed micro-

Doppler signatures of vibrating or rotating structures, modeled as point scatterers,

in the time-frequency domain using computer simulations. A periodic vibration or

rotation generates sideband Doppler frequency shifts about the Doppler shifted cen-

tral carrier frequency. The modulation involves harmonic frequencies that depend

on the carrier frequency, the vibration or rotation rate, the angle between the direc-

tion of vibration and the direction of the incident wave.

According to Chen et al., the micro-Doppler effect can be derived by introducing

vibration or rotation to conventional Doppler analysis. Fig. 3.2 shows an exemplary

spinning wheel that is moving away from a stationary radar sensor. The micro-

Doppler is derived for this spinning wheel example considering a point scatterer P

as simplification. Note that the number of point scatterers may be increased arbi-

trarily. The radar system is assumed stationary and located at the origin Q. Three

coordinate systems are introduced, the radar coordinate system (U, V,W ), the target

coordinate system attached to the target (x, y, z) and a reference coordinate system

(X, Y, Z) which has the same translation as the target local coordinates (x, y, z) but

has no rotation with respect to the radar coordinates (U, V,W ). The reference co-

ordinate system shares the identical origin O with the target local coordinates and

is assumed to be at a distance R0 from the radar. The unit vector of the radar LoS

is defined as

n =
R0

‖R0‖
= (cos(α) cos(β), sin(α) cos(β), sin(β))T , (3.5)
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Figure 3.2: Geometry of a radar sensor which measures a spinning wheel moving
away from the sensor and thus, exhibiting a translational and rotational velocity
component. The various coordinate systems and point P is used to derive the
micro-Doppler equations.

where ‖ · ‖ is the Euclidean norm, α the azimuth and β the elevation angle of the

target in the radar coordinates (U, V,W ), respectively.

The target has a translational velocity vtrans and an angular rotation velocity ω with

respect to the radar, where the angular rotation velocity can be represented in the

reference coordinate system as ω = (ωX , ωY , ωZ)T . The point scatter P , which is

initially located at r0 = (X0, Y0, Z0)T is assumed to move from its initial location

to point P ′ within time t and velocity vtrans. The motion can be decomposed in

a translational and rotational motion and the distance from sensor to P ′ can be

expressed as

QP ′ = R0 + vtranst+ Rot(t) · r0, (3.6)

where the rotational component is described by Rot(•), R0 is the distance from the

radar to the initial point O, vtrans is the transitional velocity component within time

interval t and r0 is the distance from O to scatter point P . Note that, the rotational

motion at each time interval t is assumed infinitesimal. The time-dependent scalar

range measured in the sensor coordinate system is accordingly

R(t) = ‖R0 + vtranst+ Rot(t) · r0‖. (3.7)

The radar transmits an exemplary sinusoidal waveform with a carrier frequency fc
and the returned baseband signal from the point scatterer is a function of R(t) as

s(t) = ρ(x, y, z) · e(j2πfc
2R(t)
c ) = ρ(x, y, z) · e(jΦµD(R(t))), (3.8)
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where ρ(x, y, z) is the point scatterer P reflectivity function in local coordinates

(x, y, z). The baseband signal is

ΦµD(R(t)) = 2πfc
2R(t)

c
, (3.9)

and after deriving the phase the Doppler frequency shift of the target motion can

be expressed as

fD =
1

2π

dΦµD(R(t))

dt
=

2f

c

d

dt
R(t),

=
2f

c

1

2R(t)

d

dt

[
(R0 + vtranst+ Rot(t) · r0)T × (R0 + vtranst+ Rot(t) · r0)

]
,

=
2f

c

[
vtrans +

d

dt
(Rot(t) · r0)

]T
nP , (3.10)

where

nP =
R0 + vtranst+ Rot(t) · r0
‖R0 + vtranst+ Rot(t) · r0‖

, (3.11)

is the direction unit vector from the radar to P ′. The rotational component of

Eq. 3.10 can be expressed as a skew symmetric matrix ω̂ associated with ω, which

is the linear transformation that computes the cross product of the vector ω with

any other vector. Therefore, the angular rotation velocity vector ω = (ωX , ωY , ωZ)T

rotates along the unit rotation vector ω′ = ω/‖ω‖. Assuming that, the rotational

motion at each time interval is infinitesimal the rotation matrix can be written in

terms of matrix ω̂ as

Rot(t) = eω̂t, (3.12)

with

ω̂ =

 0 −ωZ ωY
ωZ 0 −ωX
−ωY ωX 0

 . (3.13)

Thus, the Doppler frequency shift can be expressed as

fD =
2f

c

[
vtrans +

d

dt
(eω̂tr0)

]T
nP ,

=
2f

c

(
vtrans + ω̂eω̂t

)T
nP ,

=
2f

c
(vtrans + ω̂r)T nP ,

≈ 2f

c
(vtrans + ω̂ × r)Tn, (3.14)
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where the direction unit vector nP can be approximated by n = R0/‖R0‖ ≈ nP due

to R0 � ‖vtranst+ Rot(t) · r‖. Hence, the Doppler frequency shift is approximately

fD =
2f

c
[vtrans + ω × r]radial , (3.15)

where the first term is the Doppler shift due to the translational motion and the

second term is the term for the micro-Doppler shift caused by the rotation of the

object

fmicro-Doppler =
2f

c
[ω × r]radial . (3.16)

Beyond Chen, literature reports some approaches which deal with the extraction and

valid interpretation of the micro-Doppler effect for traffic participants in motion. A

first approach to detect spinning wheels from a moving target under utilization of

the micro-Doppler effect for automotive applications was presented by Kellner et

al. [KBK+15, DKH+15]. In this approach, the authors introduce a normalized

Doppler moment of each reflection, which describes the Doppler signature based on

the wheel Doppler distributions. A bulk motion corridor is formed and the received

detections outside this corridor are weighted according to the velocity difference to

the bulk motion. The wheel-induced micro-Doppler detections are separated from

the bulk motion taking the azimuthal parameter for each detection into account.

This method achieved an average detection rate of 1.5 wheels per measurement.

Due to the bulk corridor, it is sensitive to the specific bulk velocities.

A similar method to separate the micro-Doppler from the bulk motion Doppler us-

ing a normalization approach was presented by Li et al. [LDL11]. The key idea

is to estimate the returned signal based on physical models. They assume a deter-

ministic amount of scatter points on the wheel surface, and, based on these points,

the authors derived a model to estimate the returned radar signal strength, which

is normalized consequently.

In this thesis, the micro-Doppler effect is extensively evaluated for targets in close

distances. The method delivers characteristic wheel hypotheses on the vehicle sur-

face in a generic approach without the specification of a bulk motion velocity. The

high Doppler resolution of the radar enables a comprehensive analysis of the target

vehicle specific Doppler and micro-Doppler signals.
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3.2 Spatially resolved micro-Doppler spectra based

wheel detection

The presented FMCW radar platform and signal processing (section 2.2.1 and 2.2.3)

provide range, velocity and azimuthal information of targets in the local environ-

ment. An approaching target in close distance generates detections in several range,

velocity and angular bins due to the radar system’s high resolution. The rotating

components, e.g., target vehicle wheels, induce additional micro-Doppler signals.

The literature research in the previous chapter stated a few methods and procedures

to process the micro-Doppler signal and to derive additional information about the

target object.

However, a generic and robust method, which requires sparse assumptions about the

target, is still left to be researched. This section presents a generic method to pro-

cess micro-Doppler information and provide a solution to the wandering dominant

scatter point problem as one of the scientific contributions of this thesis.

3.2.1 Method

The key idea is to estimate spatial wheel positions in the x-y-plane and correspond-

ing bulk velocities of the rotating components using the micro-Doppler effect to

generate characteristic points fixed in the target coordinate system: the target ve-

hicle wheels. These characteristic points are unlikely to move on the target surface.

Instead, they maintain on their positions even in highly dynamic driving situations

like evading maneuvers and are referred to as clustered wheel detections, which are

processed to wheel hypotheses Wlw(x, y, vB). After the reader is introduced to real

radar data visualizing the micro-Doppler effect of an approaching target vehicle, the

procedure flow chart presents the proposed method. The proposed method incor-

porates all pre-processed detections assigned to one target (ND,target(r, vrad, θ)) per

radar snapshot. This includes reflections from the vehicle body as well as from the

rotating wheels, referred to as Doppler detections and micro-Doppler detections in

the r-vrad-plane, respectively.

Fig. 3.3 presents radar data snapshots, where a target vehicle approaches the sen-

sor in different driving situations with varying criticality for each scenario: straight

target approach, close target turning maneuver and evading maneuver. The turn-

ing maneuver is executed at low speed, whereas the evading maneuver is performed

with a target velocity of approximately 9 m
s
. Each row of Fig. 3.3 shows one of

the scenarios mentioned above, where the left column presents the target detections

in x-y-plane and the right column presents the Doppler- and micro-Doppler effect

based detections as the velocity profile in r-vrad-plane.

The first row of Fig. 3.3 presents the straight approaching maneuver. The target ve-

hicle is at roughly 9 m. The dominant scatter point is centered on the front bumper

of the vehicle and the bulk target velocity during the maneuver is at roughly −8 m
s
.

The bulk induced detections are narrowly spread along the r-axis since no yaw mo-

tion of the target is present. Intense and along the vrad-axis widespread front wheels
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Figure 3.3: Snapshots of radar measurements presenting the target position (left
column) and the target velocity profile (right column) in three target approach-
ing scenarios: straight target approach, close target turning maneuver and critical
evading maneuver. Detections mainly generated by the bulk are referred to as
Doppler detections and detections mainly generated by rotating wheels are referred
to as micro-Doppler detections, respectively. The bulk- and wheel-induced detec-
tions yield distinct velocity profiles (distributions along the r-vrad-axis at bulk and
wheel positions) for each snapshot.
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induced, micro-Doppler based detections are present. Moreover, detections accumu-

late at back axle range, which are dispersed but clearly visible.

The second row of Fig. 3.3 presents a radar snapshot taken during a close turning

maneuver in front of the radar sensor. The left front bumper is at approximately

2.2 m. Compared to the first example, the closer vehicle shows a broad dominant

scatter point covering the front bumper and partially left side of the vehicle. Over-

all, the majority of detections originate from the target surface. The bulk velocity

in the profile shows a similarly broad distribution along the vrad-axis due to the

close distance and high target yaw rate of the turning maneuver. The dominant

scatter point velocity is approximately −3 m
s
. Notable are intense micro-Doppler

detections induced by the front wheels at −6 m
s

whereas the back axle wheels induce

a widespread group of detections along the r-axis.

The bottom row of Fig. 3.3 shows a snapshot during an evading maneuver. The

left front bumper is at roughly 5.5 m while the vehicle maintains a high yaw rate

to avoid a collision with the radar sensor. The distribution of spatial detections

is similar to the turning maneuver. The target velocity profile shows again a wide

bulk detections spreading along the vrad-axis. The dominant scatter point velocity

is −9 m
s

in the front of the vehicle. The various micro-Doppler detections induced

by the front and rear wheels are clearly detectable and visible.

These measurements proof, the wheel induced micro-Doppler signals depend strongly

on the sensor-to-target configurations and are detectable with the proposed sensor.

Low-range and dynamic driving situations, like pre-crash evading maneuvers, induce

multiple micro-Doppler detections due to high front-wheel steering angle and high

yaw rates. Besides, in pre-crash scenarios, the number of objects in the sensor FoV

is radically reduced compared to other environment perception functions, e.g., for

comfort systems. This leads to less interference of multiple objects in the r-vrad

dimension.

In the following, a procedure to estimate wheel position and corresponding bulk ve-

locity estimation, based on the micro-Doppler signals, is presented. Fig. 3.4 presents

the procedure flow chart. The key idea is a two-staged method to determine and

incorporate the variance of detections along the vrad-axis for each r-θ-cell, which

serves as a distinctive velocity parameter for rotating target components. A sub-

sequent determination of the azimuthal parameter for each (r, θ)-cell yields wheel

positions and corresponding bulk velocities.

A micro-Doppler parameter PµD(ri, θj), quantifying the velocity deviation of all de-

tections from mean velocity inside a 2-dimensional sliding window applied to each

(r, θ)-cell, is defined as

PµD(ri, θj) =

(
1

Awin

∑
k,o,m

(vm(ri+k, θj+o)− v̄(ri, θi))
2

)1/2

, (3.17)

with k = −nk/2, ...,+nk/2, o = −no/2, ...,+no/2 and m = 1, ..., Nd(r, θ), where nk
and no are the sliding window lengths in range and azimuth dimension, Nd(r, θ)
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Figure 3.4: Flowchart to spatially resolve micro-Doppler spectra based on radar
detections. The input are all target assigned detections of one radar measurement
cycle. Output are wheel hypotheses Wlw(x, y, vB) containing position and velocity
estimates.

is the number of reflection points inside the (k, o)-th cell, Awin is the area of the

sliding window and v̄(ri, θi) is the mean velocity inside the sliding window. Eq. 3.17

determines the velocity variance within a sliding window for each (r, θ)-cell. The

induced micro-Doppler signals presented in Fig. 3.3 indicate higher variance value,

which predominantly occurs at wheel ranges in comparison to non-wheel ranges.

Each target detection ND,target(r, vrad, θ) is extended by this micro-Doppler parame-

ter, referred to as enhanced target detections (ETD). Hence, a high PµD-value is

associated with elevated probability for a wheel located nearby. Deploying Eq. 3.17
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Figure 3.5: Radar data snapshot presenting the proposed method to determine the
spatial location of the target vehicle during an evading scenario.
Top left: Snapshot of a target vehicle velocity profile, showing r-vrad-detections,
during an evading maneuver. The Doppler and micro-Doppler signals are clearly
detectable. Top right: Visualization of the normalized velocity variance according
to Eq. 3.17. Wheel induced r-vrad-detections show large values. Bottom left:
Result after the clustering procedure of high PµD-valued detections. All threshold
exceeding detections are considered in the clustering. The red crosses indicate the
wheel positions and result from Eq. 3.18. Bottom right: Visualization of all
detections in the x-y-plane with corresponding intensities. The red crosses indicate
the wheel positions.

to all (r, θ)-detections and applying an additional threshold PµD > threspos, the re-

sult separates bulk detections from wheel detections N̄D,target(r, vrad, θ, PµD).

At this point, every (r, θ)-detection is associated with its new variance velocity

parameter, the novel generated PµD-value. A successive DBSCAN clustering to all

points exceeding the threshold are grouped in the r-θ-dimension. These points are
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referred to as clustered wheel detections and N̄D,lw(r, vrad, θ, µD) in Fig. 3.4,

respectively. For each cluster, a centroid is determined using

Wlw =
1

Nd,PµD

∑
Nd,PµD

Ad,PµD(x, y), (3.18)

where Wlw is the wheel position estimate, Nd,PµD is the number of clustered detec-

tions and Ad,PµD(x, y) are all clustered wheel detections N̄D,lw(r, vrad, θ, µD). These

spatial information for all clustered wheel detections are stored in the wheel hy-

potheses Wlw(x, y).

Fig. 3.5 visualizes the signal processing of the proposed method to determine wheel

positions of a target vehicle executing an evading maneuver. The top left figure

of Fig. 3.5 shows a snapshot of the target vehicle velocity profile, respectively r-

vrad-detections. The top right figure of Fig. 3.5 presents the normalized velocity

variance. Wheel induced detection are likely to possess a broad velocity spread

along the vrad-axis. The potentially bulk generated detections are likely to range

close to 0 m
s

whereas wheel induced detections are up to 8 m
s
. The threshold value

threspos intents to separate bulk-induced detections from wheel-induced detections.

Since the bulk detections spread in the velocity dimension is range-dependent, as

shown in the second and third row of Fig. 3.3, the threshold value is adjusted when

the target vehicle is close to the sensor and generate broad bulk velocity spread.

The bottom left figure of Fig. 3.5 presents wheel detections and wheel position

hypotheses result after clustering all detections possessing a high micro-Doppler pa-

rameter PµD(ri, θj). All threshold exceeding detections from the previous step are

considered in the clustering step. The red crosses indicate the wheel positions. The

final procedure results are visualized in the bottom right figure of Fig. 3.5 and show

all detections in the x-y-plane with corresponding intensities. The red crosses indi-

cate the wheel position hypotheses Wlw(x, y).

To complete the parameter set, the Doppler velocity of the target at wheel loca-

tions are of interest. The velocity for the estimation of the target dynamics is the

bulk motion of the vehicle at wheel positions, referred to as bulk wheel velocity.

The expected Doppler velocity is independent of the range r [KSD16]. Hence, the

Doppler velocity for a certain angle can be extracted from all scatterers from the

considered direction.

Since there are more intense detections reflected from the vehicle body than from the

wheels, an additional segmentation procedure is applied. First, all enhanced target

detections (ETD) from the previous step with same angle θ as the respective wheel

hypotheses Wlw(x, y, θ) are subject to PµD < thresvel identifying all detections which

are predominantly originated from the vehicle body, since PµD is low. Second, for

the remaining detections, the maximum value for measured intensity is taken and

the corresponding bulk wheel velocity vB,lw of this single detection is determined.

Fig. 3.6 shows the bulk wheel velocity vB,lw estimation in the θ-vrad-plane. The
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Figure 3.6: Snapshot presenting the procedure for velocity estimation per bulk wheel
velocity (vB,lw), detections assigned to wheels based on the micro-Doppler parameter
PµD(r, θ) (DW1−4) and every detection from the target vehicle during an evading
maneuver in the Θ-vrad-plane. The bulk velocities vB,lw are set to the most intense
bulk detection for each angle segment containing a detected wheel. The bulk and
micro-Doppler detections are clearly visible since the bulk detections accumulate at
−10 m

s
.

snapshot presents the vB,lw velocity parameter, the detections assigned to wheels

based on the micro-Doppler parameter PµD(r, θ) (DW1−4) and all detections from

the target vehicle. Each cross indicates the Doppler and micro-Doppler detections

assigned to one wheel, respectively. The most intense detection of all bulk detections

per angular segment containing a wheel hypothesis is set as the bulk velocity value.

The bulk and micro-Doppler detections are clearly visible since the bulk detections

accumulate at −10 m
s
.

3.2.2 Validation using real radar data

The previous section introduces a generic target wheel positions and correspond-

ing bulk velocity estimation procedure incorporating all target scattered detections

and presents the method applied on a single measurement snapshot. This section

evaluates the proposed method during a full maneuver with varying driving dy-

namics. Radar sensor measurements were conducted using a real vehicle as target

object. The target is equipped with a real-time kinematic (RTK) reference mea-

surement system to evaluate the wheel detection results. A GeneSys ADMA-G

equipped with RTK positioning is used to obtain the ground truth global position
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Figure 3.7: Target trajectory and dynamics during evading maneuver as scenario
description.

estimate with an accuracy of ±0.02 m and acceleration and turn rate data in three-

axis (ax, ay, az, wx, wy, wz) for arbitrary positions of the target vehicle.

A high dynamic evading driving maneuver in front of the radar sensor is chosen as

the evaluation scenario. The executed driving scenario is selected to evaluate the

performance in low-range sensor-to-target configurations. Extensive range of yaw

angles, yaw rates and safety-critical high longitudinal and lateral accelerations oc-

cur when the test driver tries to avoid an imminent collision in the very last moment.

Fig. 3.7 presents the proposed evading maneuver and its driving dynamics. The

top figure of Fig. 3.7 visualizes wheel positions of the target vehicle seen from the

birds-eye view and the bottom figure of Fig. 3.7 shows the target velocity and yaw

rate for 60 measurement cycles. The radar sensor is located in the coordinate sys-

tem’s origin and the dashed lines indicate its FoV. The first measurement is taken

at 12 m, the initial target velocity is 10 m
s

and the target is heading straight at an

initial yaw rate of 0
◦
s

without driver intervention. The vehicle is on a collision

trajectory with the sensor. To avoid a collision, the driver initiates an evading ma-

neuver without activating the braking system, causing an ascend of the yaw rate

whereas the velocity is decreasing. In the further course of the maneuver, the yaw

rate is increasing due to the high steering angle set by the driver and the velocity is

decreasing. The target passes the sensor at a range of 2.2 m and avoids a collision
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Figure 3.8: Spatially resolved micro-Doppler spectra based spinning wheel detection
evaluation of wheel position during an evading maneuver.

with the sensor.

Fig. 3.8 presents the detected wheels for each respective wheel based on the spatially

resolved micro-Doppler spectra evaluation. Fig. 3.9 shows the number N of detected

wheels and bulk velocities at wheel positions compared to the true target velocities.

Fig. 3.10 presents an error evaluation where estimated wheel positions and velocities

are compared to reference data.

The first wheel (front-left, black marker) is detected at a range of approximately

12 m, which corresponds to cycle 17. Blue circles represent the true wheel positions

and black crosses represent the estimated wheel positions, respectively. This wheel

is detected almost during the entire maneuver. The accuracy for position, error

ranging below 0.4 m, and velocity, error ranging below 2 m
s
, is notably high since

it is one of the direct LoS sensor-facing spinning wheel and hence likely to be de-

tectable.

Two cycles later, the front right wheel is detected indicated by gray markers, re-

spectively. The accuracy for position and velocity estimation is similarly compared

to the front right wheel. However, the detection time is shorter than the left wheel

due to a potential weaker micro-Doppler signal caused by an occlusion of the right

wheel.

The rear left wheel is the third detected wheel, which corresponds to the red mark-

ers, respectively. The accuracy for position estimation is again similar up to cycle

45, followed by an increase up to 0.6 m for the lateral position. Notably is a decreas-

ing accuracy of velocity estimation at the end of the maneuver.
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Figure 3.9: Spatially resolved micro-Doppler spectra based spinning wheel detection
evaluation of bulk wheel velocities during an evading maneuver. The figures present
the number N of detected wheels and the velocity estimation compared to the true
target velocity for each detected wheel.

The rear right wheel corresponds to the green markers, respectively. The detection

rate is comparably low due to extensive occlusion by the other wheels. This may be

due to multipath propagation backscattered from the wheel and reflected between

the vehicle floor and the road. However, the estimation accuracy for position and

velocity are similar to the other wheels.

Fig. 3.10 presents the number of detected wheels per cycle, the errors for all es-

timated parameters compared to the reference sensor and the mean error for all

parameters. The wheel number per cycle, once the full target extent is within 12 m,

ranges between 2−4 wheels per cycle depending on the sensor-to-target configura-

tion.

Overall the longitudinal position error ex is comparably low, ranging below 0.4 m,

during the approaching and low yaw rate passage of the maneuver. It is slightly

increased when the vehicle is reaching the sensor FoV boundaries. The lateral error

ey ranges up to approximately 0.8 m when the target is at the sensor FoV limits.

The velocities errors are below 2 m
s
, whereas the error increase with an increasing

azimuthal angle under which the sensor illuminates the target. The additional tar-

get information is a promising parameter for a subsequent tracking procedure to

estimate additional dynamic target states.
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ēy,mean
ey,FL
ey,FR
ey,RL
ey,RR

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

Cycles N

e v
,

[m
s
]
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Figure 3.10: Error evaluation of spatially resolved micro-Doppler spectra based
spinning wheel detection of wheel position and velocity during an evading maneuver
compared to the reference sensor. The top figure shows the number N of detected
wheels per cycle and the remaining figures present the mean longitudinal and lateral
wheel position error and the velocity compared to the true target velocity at the
wheel positions. The error ēx, ēy and ēv show the mean value for all detected wheels
for each cycle.

3.2.3 Conclusion

This chapter presents a novel procedure to estimate target wheel positions and

corresponding bulk velocities based on radar sensor data. The contribution is to

spatially resolve micro-Doppler signals, generated by rotating wheels of the target

vehicle. The detected wheels serve as fixed scatter points on the target vehicle.

Subsequently, characteristic points of the target are determined and the effect of

wandering dominant reflection centers on the surface is mitigated. A micro-Doppler

parameter is defined, which quantifies the velocity deviation of all detections from

the mean velocity within a 2-dimensional sliding window applied to each (r, θ)-cell

of the radar data cube. Since the velocity of each reflection at the target object is

independent of its range, the velocity is set as the bulk velocity of the considered

angle segment in which the respective wheel is present. The method is evaluated in

a dynamic driving scenario where the driver performs an emergency evading action

to avoid a collision with the sensor platform. The results proof feasibility of the

proposed method and enable an advanced extended object tracking, incorporating
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the additional target information, in the following chapter. Procedure improvement

possibilities may be realized in the future to enhance overall detection performance

by introducing sophisticated estimation methods for data segmentation and pre-

processing, e.g., machine learning or curve fitting. Also a automated labeling of

each wheel hypothesis is beneficial for the subsequent tracking procedure in future

development stages.
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3.3 Multipath propagation in uncertain environ-

ments

For convenience, a brief review of the multipath propagation problem in low-range

sensor-to-target configurations is given and the section is based on [KHP+18]© 2018

IEEE. The challenge is the type of propagation that the radar signal may take

on the transmitting or receiving path. After reflection on an obstacle, the co-

herently emitted waves of FMCW radar may be subject to multipath propagation

[WHC16, GSYF17]. Then, the radar receives not only the direct reflection of an

obstacle but also indirect temporally shifted reflection components. This superposi-

tion can lead to range-dependent interference patterns, which cause oscillating signal

amplitudes of the received power [DKS+11]. In addition to performance degradation

of the DoA estimation due to fading effects, multipath propagation can lead to the

appearance of mirrored ghost targets, referred to as false-positive or ghost targets

[VHZ18, EHZ+17].

Engels et al. [EHZ+17] showed that the occurrence of ghost targets through mul-

tipath reflections in long-range applications can lead to an overall deterioration of

the sensor performance and creates high demands on signal processing algorithms

concerning the suppression of mispredictions. By using a decoupled high-resolution

frequency estimation method in the Fourier domain, estimation of the actual target

positions that are subject to multipath propagation can be significantly increased.

However, a detailed analysis of multipath propagation for correct classifications of

ghost targets is still of primary importance. Taking into account the advanced driver

assistance systems (ADAS) developments regarding large-scale integration of high-

resolution, low-range radar sensors for direct vehicle environment, the influence of

multipath reflections may increase significantly.

Hence, sensor environment perception contains non-existing obstacles, which can

lead to fatal real-world driving situations for humans and vehicles in future auto-

Ghost

Barrier

Road

Ego

Target

Figure 3.11: Driving scenario with ghost object presence [KHP+18] ©2018 IEEE.
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mated driving scenarios.

Fig. 3.11 illustrates the effect on a typical traffic scenario. The ego vehicle is be-

ing approached by another vehicle along a curved road. The receiving radar signal

consists of the corresponding propagation paths, including the specular multipath

propagation via the guardrail inducing a ghost target with a velocity component

directed towards the ego vehicle. This section presents a model-based geometric

method that demonstrates the occurrence and the behavior of multipath reflections

and validates the results with measured data of a custom and real vehicle target.

3.3.1 Multipath propagation model

Fig. 3.12 shows the multipath reflections that may occur on a reflection surface

between a radar sensor and a target object at sensor height. The emitted electro-

magnetic wave is reflected by an object and is subject to multipath propagation.

Consequently, the receiving radar signal represents a superposition of four propa-

gation paths, whose frequency components assign different distances. This leads to

the occurrence of false-positive detections (OFPn), where n is the number of false-

positive detections. Note that the number of propagation paths is not limited to

four. The considered paths and thereof resulting reflections are the predominant

reflections.

This section presents a geometric multipath propagation model to determine the

predominant electromagnetic wave paths and false-positive object positions. The

sensor S travels on a circular path with radius ~rm relative to a center point M and

spans an angle ψ between the sensor S and the target position T . The electro-

magnetic wave gets reflected in reflection point Pref at a distance |~rref| relative from

center point M and angle ψ/2. Note that, additional information about the specular

reflection surface are usually not available and thus, the assumption of the reflection

point Pref is at ψ/2 is made.

The distance between the target position T and the center point M is |~rt|. For

given M , target object radius |~rt|, reflection point radius |~rref| and angle ψ, the

target position T and the reflection point position Pref can be determined using

~rt = −r̂m ·Xψ
rot · |~rt|+ ~rm, (3.19)

~rref = −r̂m ·X
ψ
2

rot · |~rref|+ ~rm, (3.20)

where vectors are rotated by a rotation matrix Xα
rot by a clockwise angle α and r̂m

is the normalized vector.

One target T in the radar field of view generates three false-positive objects OFP 1-3

due to multipath reflections. The target reflection is the direct LoS reflection. False-

positive object OFP 1 path origins from the sensor to the reflection surface, gets

reflected towards the target object and back to the sensor. False-positive object

OFP 2 is the identical propagation path backwards. False-positive object OFP 3 path

starts at the sensor, gets reflected towards the target object, back to the reflection

surface and back to the sensor leading to the faraway one.
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Figure 3.12: Multipath propagation model showing a radar sensor (S), a reflection
point (Pref) on a reflection surface, a target obstacle (T ) and three false-positive
reflections (OFP 1-3).

The azimuthal angles spanned by ](~rm, ~ra) and ](~rm, ~rT ), referred to as δ and γ,

can be computed using vector analysis. The wave travel paths |~r′T | and |~rFP 1-3| can

be determined using Eq. 3.19, Eq. 3.20 and

|~r′T | = 2 · (|~rt − ~rm|︸ ︷︷ ︸
|~rT |

), (3.21)

|~rFP 1,2| = |~rref − ~rm|︸ ︷︷ ︸
|~ra|

+ |~rT | + |~rt − ~rref|︸ ︷︷ ︸
|~rc|

, (3.22)

|~rFP 3| = 2 · (|~ra|+ |~rc|), (3.23)

where |~r′T | is the propagation path length from the sensor to the target object and

back, whereas |~rFP 1-3| are the path lengths from the sensor to the false-positive

objects and back, respectively.

The position can be determined considering relative azimuth angles δ and γ when

the electromagnetic waves get reflected back to the sensor either by the reflection

point or by the target object with

~OFP 1 = ~ex · |~rFP 1| ·X−γrot , (3.24)

~OFP 2 = ~ex · |~rFP 2| ·X−δrot , (3.25)

~OFP 3 = ~ex · |~rFP 3| ·X−δrot , (3.26)

where ~ex is the unit vector in x-direction.

52



3.3. MULTIPATH PROPAGATION IN UNCERTAIN ENVIRONMENTS

3.3.2 Multipath model validation using real radar data

Radar sensor measurements with a custom target, a real vehicle and a barrier are

conducted to test and validate the proposed model. Fig. 3.13 presents the experi-

mental setup. The radar sensor is placed stationary with an angle α = 45◦ rotated

towards the reflection surface representing a vehicle corner radar. The custom target

consists of two trihedral retroreflectors and a metal plate. One retroreflector causes

a direct reflection back to the sensor. The other retroreflector reflects the wave,

coming from the reflection surface, back to the barrier generating OFP 3. The metal

plate mimics a license plate and the front bumper of a real vehicle and generates

false-positive objects OFP 1 and OFP 2.

Retroreflectors &

Platform

α

Barriers

Radar
sensor

metal plate

Figure 3.13: Experimental configuration showing the radar sensor, a barrier and the
target object on a platform [KHP+18] © 2017 IEEE.

The multipath propagation assumptions made in the model are validated using

anechoic panels. The pyramidal shape and the material of the graphite coated

polyurethane panels provide a significant attenuation and enable reproducible in-

door radar testing. Measurements using the radar, custom target, real barriers and

either with or without anechoic panels are carried out.

Furthermore, an intersection crossing scenario is constructed as a real-world urban

driving scenario using the radar sensor as a corner radar. The sensor faces towards a

building with an angle of 45◦ at a reasonable distance, e.g., sidewalk width. Another

vehicle is approaching from the left and crossing the intersection straight. Fig. 3.14

and Fig. 3.15 show radar measurement results according to the described experi-

mental setup, respectively.

Each figure shows the x-y-plane of the radar FoV with either the custom target or a

real vehicle as present target and either a real barrier or a wall as reflection surface.

In the following, the relative position of obstacles in the sensor FoV are referred to

in Cartesian coordinates (x, y).
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(a) Radar snapshot with a target (T) and 3 multipath reflections (1-3).
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(b) Radar snapshot with mounted anechoic panels, the target and attenuated
multipath reflections.

Figure 3.14: Multipath propagation model validation presenting radar snapshots
with present target and a reflection surface. Red crosses indicate the ghost target
positions determined using the model. The top figure shows results for blank barriers
and the bottom figure shows results with covered barriers [KHP+18] © 2018 IEEE.

The top plot in Fig. 3.14 shows a single measurement snapshot illuminating blank

barriers and the target object (T). Multipath reflections, indicated by 1, 2, and 3,

from the barrier and the obstacle are clearly visible and appear as stated in section

3.3.1. The results of the presented model are marked as three red crosses localizing

the corresponding false-positive multipath reflections. The bottom plot in Fig. 3.14

shows a measurement shot with the identical experimental setup illuminating bar-

riers, but anechoic panels cover the direct reflection area. The target direct and
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Figure 3.15: Radar shot results using a radar sensor, a custom reference target and
a real target vehicle [KHP+18] ©2018 IEEE.

barrier reflections are clearly visible, but the installation of several absorption pan-

els attenuates all multipath reflections.

The top left plot in Fig. 3.15 shows a building as reflection surface in close distance

to the sensor causing intense reflections and broad peaks. In the upright corner, at

(6, 14.5), one multipath reflection from the real vehicle as the target is present. It

corresponds to OFP 3 from the model. The rotated radar sensor does not receive a

direct reflection from the target vehicle. The target is to the left of the image, and

hence, undetectable in this early stage of the scenario.

The top right plot in Fig. 3.15 show both, the target vehicle and one multipath

reflection in the same scenario a few cycles later. False-positive reflections are more

intense due to the radar sensor antenna characteristic emitting a high power level

in the main lobe and less power in the side lobes. The multipath reflection can be

identified as OFP 3 from the model.

The bottom left plot in Fig. 3.15 shows the target vehicle, which has further ap-

proached to the sensor. The false-positive reflections and the LoS reflection from the

vehicle decomposed into multiple intense peaks. Again, the false-positive reflection

shows a higher intensity due to the radar sensor antenna characteristic. The radar

sensor illuminates the target vehicle right side leading to the less intense reflection

(T) and simultaneously enables multipath reflections OFP 1-3. Due to the close dis-

tance from the sensor, reflection surface, target vehicle and, in addition, the large

reflection areas from the building and the target vehicle side surface, it is highly

probable to generate all multipath reflections at the same time.
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The bottom right plot in Fig. 3.15 shows the target vehicle which is at the same

lateral position as the wall of the building causing a random generation of multipath

and direct LoS reflections from the radar sensor to reflection surface and backward to

the sensor. A separation between multipath reflections and the true target vehicle

is hardly possible.

3.3.3 Conclusion

The presented model analyzes the emergence and behavior of radar-based multipath

reflections, leading to multiple false-positive targets and an elevated false alarm rate

in real-world driving scenarios. Based on propagation and reflection behavior of

electromagnetic waves, a geometric reflection model is derived illustrating the oc-

curring multipath reflections in real-world surfaces, e.g., buildings or road-bounding

barriers, e.g., guardrails. The geometric propagation model determines the relative

positions of the false-positive reflections and validated them with extensive radar

sensor data. A custom reflector target mounted on a platform, creating determin-

istic point targets as dominant backscatter centers of a vehicle body, validated the

different multipath reflections and the overall accuracy of the model. Radar measure-

ments of a vehicle during an intersection driving scenario provides detailed insights

into the multipath reflection behavior and additionally confirms the assumptions

made in the model. The model may be enhanced in employing a reflection surface

model. Thereby the simplification assumption that the reflection point is at ψ/2

may become redundant.

The results identify the emerging challenges for the correct interpretation of false-

positive targets to enable sophisticated automotive safety-, comfort- and automation

applications. Based on these results, further investigations on the effects of multi-

path reflections for automotive radar sensors need to be carried out to analyze the

influence also on the object velocity determination based on the Doppler effect. Ob-

servations show a shifted velocity signal for every false-positive object. Note that

the multipath model does not apply in the tracking chapter. This effort is left for

future work.
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3.4 Chapter summary

This chapter presented the fundamentals of electromagnetic wave propagation for

the Fresnel and Fraunhofer region, the micro-Doppler effect and introduced two

novel methods – spinning wheel detection based on spatially resolved micro-Doppler

signals and a generic multipath propagation model to identify false-positive reflec-

tions.

The micro-Doppler effect of vibrating or rotating target components, e.g., spinning

wheels, is detectable in close sensor-to-target configurations and delivers additional

target information. The micro-Doppler effect for spinning wheels was derived and

real radar data snapshots presented the measurable micro-Doppler effect in ap-

proaching scenarios. These Doppler signals are used to determine wheel position

and bulk velocity as characteristic points. The characteristic points are used to

solve the problem of wandering dominant scatter points on the vehicle surface in

the next chapter. The scientific contribution is to spatially resolve the micro-Doppler

effect to determine the characteristic features. A micro-Doppler parameter is de-

fined, which quantifies the velocity deviation of all detections from the mean velocity

inside a sliding window applied to each range-angle-cell. This method is evaluated

in a dynamic evading maneuver. The test driver performs an emergency evading

action to avoid a collision with the sensor platform. The results proof feasibility of

the proposed method and enable a subsequent extended object tracking, incorpo-

rating the additional target information, in the following chapter.

In comparison to the detections reflected from the object of interest, target vehi-

cles in close distance may be subject to multipath propagated detections, where

the transmitted electromagnetic wave potentially gets reflected by other objects or

structure surfaces, e.g., guardrails. This chapter introduced a survey for the number

and position of multipath detections and a generic method to identify false-positive

objects. The presented model is based on computation efficient geometric vector

analysis for given radar detections. Besides this model and to the best of the au-

thors knowledge, the survey is the first scientific analysis that proved the generation

of multiple ghost objects per present target. The relative positions of generated

multipath objects depend on the specific circular path traveled by the electromag-

netic wave. The utilization of a custom reflector and real vehicle as target validated

the different multipath reflections and the overall accuracy of the model.
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Chapter 4

Target tracking in pre-cash

scenarios

The focus of this chapter is on principles of target tracking in pre-crash scenarios.

Thus, the chapter provides a brief but comprehensive overview of Bayesian state es-

timation. It subsequently introduces three fundamental filter designs: the Kalman

filter (KF) for linear process and measurement models, the extended Kalman fil-

ter (EKF) for nonlinear process and measurement models and the particle filter (PF),

which is well-suited to represent complex multimodal beliefs and relax the require-

ment for strong parametric assumptions on the posterior densities [TBF05].

As motivation and problem formulation, the first section presents a real-world survey

to evaluate the performance of a series radar sensor. The evaluation is conducted

using a novel test method. The vehicle with the mounted radar sensor is transferred

in a skid situation to reproducibly generate dynamic, pre-crash scenarios. In these

situations, the driver attempts to avoid imminent collisions by inducing high steer-

ing wheel angles and braking forces. The results provide evidence of the need for

research and development efforts for methods and implementations in this specific

driving situations to ensure a seamless and accurate target state estimation in skid

situations.

The contributions in this chapter include the novel test method with an extended

nonlinear vehicle motion model and a subsequent EKF implementation. The motion

model is used to estimate parameters of the horizontal vehicle motion during a skid

event. An EKF is designed to track a static target object using pre-processed auto-

motive radar signals as input. The novel filter is tested and validated under realistic

conditions using a test vehicle equipped with state-of-the-art automotive sensors in

skid situations. The filter estimates are compared to the true target motion mea-

sured with a reference system.

Another contribution in this chapter deals with an uncertain measurement model

problem. The wandering dominant scatter point on the extended object surface

leads to additional uncertainty, which needs to be considered. A subsequent track-

ing procedure, incorporating target wheel hypotheses from the previous chapter 3,

is designed to provide a solution to the problem mentioned above. The positions

and bulk velocities of spinning target wheels serve as fixed and characteristic points
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on the vehicle surface and are suitable for the subsequent tracking. The signal pro-

cessing and tracking procedure estimates the position and corresponding bulk veloc-

ity for near objects evaluating micro-Doppler signals, generated by rotating target

wheels. This novel information serves as input to a particle-filter based tracking

framework. The presented approach covers signal processing from raw radar sensor

data to extended target state estimation. The performance is evaluated on real ex-

perimental data where a target vehicle with a mounted reference sensor is used to

reconstruct safety-critical, dynamic evading maneuvers.

61



4.1. TEST METHOD FOR ENVIRONMENT SENSORS IN SKID SCENARIOS

4.1 Test method for environment sensors in skid

scenarios

A brief survey of a test vehicle with mounted automotive radar sensor in skid sit-

uations is given to emphasize and motivate the following sections. Accordingly, a

novel test method is developed to test automotive environment perception sensors

in a reproducible and non-destructive manner. Reproducible tests decrease the test

effort and support the test-driven development of new safety systems. This section

is based on [KBH+17] and [KHD+17].

The test method utilizes a kick plate, which applies a lateral force to the rear axle

of the ego-vehicle. An exemplary ego-vehicle trajectory is shown in Fig. 4.1. Kick

plates are used to improve driver reactions in unexpected skid situations to avoid

over- or understeering and the driver is trained to transfer the vehicle back in a safe

state [ABBP+11].

The ego-vehicle approaches a detected target obstacle and overruns the kick plate,

which is located between ego-vehicle and target obstacle. An external lateral force
~Fkick is applied on the rear axle by the kick plate. This force induces a rotational

component to the translational motion. It affects the vehicle yaw rate w and side

slip angle (SSA) β. As a consequence, the ego-vehicle yaw rate increases. The vehicle

is transferred in a skid driving situation under proximate deterministic conditions.

The yaw rate depends on the magnitude of external force ~Fkick and leads to in-

creased SSA, changing the direction of the longitudinal vehicle axis relative to its

motion direction. Sensor accuracy and limitations can be analyzed and measured

in a controlled manner by incrementing the shifting intensity of the kick plate. The

detection, classification and tracking performance for various surround sensors can

be tested by variation of the target position and the magnitude of the external force.

For the proposed survey, a test vehicle was used to record sensor data in regular

and skid driving situations. The vehicle, with a mounted ARS430 series radar sen-

sor and a RTK reference sensor, is used to carry out the sensor performance tests

under realistic and reproducible test conditions. The sensors are connected to a

measurement computer in the trunk and the sensor data are recorded. However,

the sensor provides a sophisticated object list as well as pre-processed raw data. In

close distance to the target object, a single measurement cycle may provide several

detections, similar to the development presented radar. The scattered radar echoes

are received and further processed to clustered detections with relative distance,

bearing and radial velocity parameters. These grouped detections are the output

of the sensor raw signal processing (RSP). For one object, the sensor may generate

multiple grouped detections, referred to as clusters. The measurements were carried

out with a standardized euro vehicle target (EVT) as a realistic radar target, which

can be crashed without damaging the test vehicle. This target is used to test and

validate various safety functions, e.g., emergency brake assist (EBA). Details of the

radar target can be found in [San13]. For the proposed skid scenarios, a distinction

between regular driving situations and skid driving situations is introduced. In reg-

ular driving situations, no external force is applied and the test vehicle approaches
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Figure 4.1: Sequence of a dynamic test run taken with a drone; time step: 0.5 s
[KHD+17] © 2017 IEEE.

the EVT straight. Ego-vehicle velocities range between 30 km/h and 50 km/h with-

out significant steering inputs. However, for skid scenarios, the kick plate is used

to transfer the vehicle and its sensors in skid driving situations. The SSA is taken

as the criticality criterion to distinguish between regular and skid scenarios. For

regular test runs, the maximal SSA is smaller than 5◦ and for skid scenarios, the SSA

is larger than 5◦, respectively.

Each test run includes three stages: the vehicle is accelerated to an initial velocity,

the rear axle is laterally shifted by the kick plate causing the vehicle to increase its

yaw angle and SSA while sliding across the watered area with low friction. Even-

tually, the test driver attempts to stabilize the vehicle while it is skidding towards

the target. Fig. 4.1 shows a top view sequence taken with a drone. Several test run

videos can be found at https://goo.gl/kREjEU.

Fig. 4.2 shows various radar sensor parameter measuring the stationary EVT during

a skid scenario with 57 cycles. For the reader convenience, the ego-vehicle dynamics

measured by the reference sensor for yaw rate, yaw angle and SSA are shown in the

top figure. The second and third-row figures present the radar sensor position and

velocity estimation indicated with crosses and corresponding reference parameters

indicated with black squares and circles, respectively. The ±2σ standard deviation

for each sensor signal is represented by the gray shades engulfing the graphs, respec-

tively. The bottom figure presents two object qualifier: the obstacle probability and

the existence probability. The first parameter is a estimate if an object is overrun-

able and the second parameter is a measure for the object existence probability.

According to the top figure, the kick plate is activated after the third measurement

cycle as the yaw rate, yaw angle and side slip angle start to increase. The yaw

rate, indicated by a solid line, rises to 36 ◦/s illustrating the high dynamic driving

situation. The SSA, indicated by a dashed-dotted line, exceeding −20 ◦ and proofs

the skid driving situation. During the scenario, the yaw angle rises to 25 ◦. The test

driver attempts to stabilize the vehicle and oscillates between under- and oversteer-

ing situations leading to alternating SSA and yaw angle. The relative x-y-position

and -velocity show an increased deviation to the reference. The maximum absolute

error is 1 m, whereas the lateral distance error ranges up to 3.8 m during the skid

situation. The errors for each signal are indicated as dashed blue and red curves,

respectively.
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Figure 4.2: Radar sensor performance survey, presenting radar sensor parameter
measuring a stationary EVT, during a skid test run with 57 cycles. The top figure
shows the ego-vehicle dynamic parameters: yaw rate, yaw angle and SSA. The
second and third row figures show the radar sensor position and velocity estimation
indicated with crosses, the reference values, indicated with black squares and circles,
and the ±2σ standard deviation for each radar sensor signal represented by the gray
shades, respectively. The bottom figure presents two object qualifier: the obstacle
and existence probability. The first parameter is a estimate if an object is overrun-
able and the second parameter is a measure for the object existence probability.
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The corresponding velocity estimation errors are presumably in similar or larger

ranges. The errors range up to 6 m/s and 16 m/s for longitudinal and lateral veloc-

ity estimations. Remarkable are the large lateral estimation error values right after

the kick plate event and during the first half of the skid scenario with a correspond-

ing wide ±2σ-band. Again, the errors for each signal are indicated as dashed blue

and red curves, respectively. The bottom figure shows a significant reduction of the

existence and obstacle probabilities during the skid event, proofing a decrease in the

environment perception accuracy and potential misinterpretations.

Concluding, the proposed survey proved temporarily large deviations up to 3.8 m

and 16m/s to the actual position and velocities during skid events, respectively.

Hence, a tracking framework in skid situations is left to be developed.
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4.2 Extended Kalman filter based point target

state estimation in skid scenarios

4.2.1 Bayesian state estimation

The Bayesian state estimation, also referred to as object or target tracking, is based

on the recursively estimated posterior probability of the target states incorporating

all available observations of the target. In the automotive environment perception

context, the information of interest is, e.g., number of present objects, static and

dynamic object states. Generally speaking, object tracking aims to estimate the

probability density function (PDF) p(x) of states x by integrating the available object

information over time. The probability density can be expressed as

p(xk) = p(xk|Zk), (4.1)

where k ∈ N is the time index, xk ∈ Rnx is the target state vector, nx the dimension

of the state vector and Zk contains all received measurements up to that time. For

this work, we restrict ourselves to signals modelled as Markovian, nonlinear, non-

Gaussian state-space models. Hence, the target states evolve according to a known

Markov model represented by fk−1, e.g., a physical motion model of an object

xk = fk−1(xk−1,vk−1). (4.2)

Note that different objects may have different motion models according to their

dynamics. Markov models may be linear or nonlinear motion models, e.g., the

presented single track motion model in section 4.2.3. It is essential to notice that

the future state may be stochastic, but no variables prior to xk−1 may influence the

stochastic evolution for future states unless this dependence is mediated through the

state xk−1. Markov chains meet these temporal processes conditions [TBF05]. The

relation between the target state and the measurements is described by measurement

function hk

zk = hk(xk,wk), (4.3)

where zk ∈ Rnz is the measurement vector with nz as measurement vector dimension

and vk−1 and wk−1 are white, independent process and measurement noises. The

noises represent the model uncertainty due to model approximations and sensor-

specific measurement uncertainties, respectively. The measurement function trans-

lates the states from state space to measurement space, e.g., when a position is

translated from a vehicle coordinate system to a sensor coordinate system to enable

a mathematical operation.

The posterior density function p(xk|Zk) can be recursively obtained using the pre-

diction and update stages [GRA04]. Assuming the posterior density p(xk−1|Zk−1)

at time step k − 1 is available, where Zk−1 contains all received measurements up
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Figure 4.3: Bayesian state estimation principles based on [GLGO14].

to that time, the prior density (predicted density) at time k may be obtained from

the system model via the Chapman-Kolmogorov equation

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (4.4)

where use has been made of the fact that the vehicle motion model is a first-order

Markov process and the term simplifies to p(xk|xk−1,Zk−1) = p(xk|xk−1). The next

stage updates the prior density. It is carried out when a new measurement zk
becomes available using the Bayes’ rule

p(xk|Zk) = p(xk|zk,Zk−1), (4.5)

=
p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
, (4.6)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (4.7)

where the denominator

p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk, (4.8)

depends on the likelihood function p(zk|xk), defined by the measurement model.

The recurrence forms the optimal Bayesian solution and requires a prior density

p(x0) at k = 0.

Practical considerations: Fig. 4.3 shows an exemplary time and measurement

update cycle and illustrates the coherence of motion and measurement models

in Bayesian state estimation. The figure and exemplary description is based on

[GLGO14]. A Bayesian state estimation algorithm composes two stages: the time

update and the measurement update. In this example, the single state xk generates

a single detection zk in each discrete time step k. The objective of single-object

estimation is to estimate the object state xk by using zk. The time update stage

predicts the motion that the object performs between two observations. In most
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cases, the motion is unknown and, hence, simplistic premises can be made about

the motion that the object is performing. To mathematically describe the motion, a

motion model of the form xk+1 = f(xk,vk) may be used. Random process noise vk
handles uncertainties and imperfect modeling. The measurement update uses the

observations delivered by the sensor to update the object estimate. Commonly, a

measurement model of the form zk+1 = h(xk+1,wk+1) is used.

Each observation is corrupted by noise wk. Each time step k, the sensor delivers

one observation zk and Zk contains all observations from time 1 to time k. Due to

the uncertainties involved, e.g., measurement and process noise, the knowledge of

the object state x is often described using probability distributions p(xk|Zk). The

evolution of the distribution of state x over time can be described using appropriate

measurement and motion models h(·) and f(·), respectively. In the following section

an extended Kalman filter (EKF) and a particle filter (PF) framework will be used

to determine the posterior densities. Note that both approaches are based on the

presented Bayesian state estimation principles.

4.2.2 Extended Kalman filter

The extended Kalman filter (EKF) is based on the Kalman filter (KF), a technique

for filtering and prediction of linear Gaussian systems invented by Swerling (1958)

and Kalman (1960) [Kal60]. The following notations rely on [TBF05] and a detailed

mathematical derivation of the KF can be found also in [TBF05].

One of the most popular state estimation techniques is the KF, which is applicable for

linear Gaussian systems. Filter results are obtained by a set of recursive prediction

and update equations. The results are represented by beliefs at time k with mean

µk and covariance Pk. The KF relies on the following linearity assumptions for state

transition probability p(xk|xk−1) and measurement probability p(zk|xk), which can

be expressed as multivariate normal distributions

pKF(xk|xk−1) = det(2πQk)
− 1

2 exp

(
−1

2
(xk − Fkxk−1)TQ−1

k (xk − Fkxk−1)

)
, (4.9)

pKF(zk|xk) = det(2πRk)
− 1

2 exp

(
−1

2
(zk −Hkxk)

TR−1
k (zk −Hkxk)

)
. (4.10)

The initial belief bel(x0) must be normally distributed of the form

pKF(x0) = det(2πΣ0)−
1
2 exp

(
−1

2
(x0 − µ0)TΣ−1

0 (x0 − µ0)

)
. (4.11)

The linearity assumption for process- and measurement equations (Eq. 4.2 and

Eq. 4.3) enables computational efficient matrix multiplication leading to

xk = Fkxk−1 + vk, (4.12)

zk = Hkxk−1 + wk, (4.13)
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where Fk and Hk represent the process- and measurement matrix and vk and wk

are corresponding zero-mean, uncorrelated and white Gaussian noise terms.

First, the filter procedure predicts the state estimate and corresponding covariance

using

x̂k− = Fkx̂k−1 + Bkuk, (4.14)

Pk− = FkPk−1F
T
k + Qk, (4.15)

where x̂k− and Pk− are the a priori state estimate and covariance, Bkuk are control

input model and control vector describing the system dynamics and Qk is the process

noise covariance, respectively. For the predicted states an expected measurement

and corresponding covariance is calculated with

ẑk− = Hkx̂k−, (4.16)

Rk− = HkPk−HT
k . (4.17)

Eventually, the observation delivered by the sensor z ∼ N (z, ẑ,Rk) at the actual

time step k is incorporated in the innovation step determining the innovation γk and

innovation covariance Sk with

γk = ẑk − ẑk−, (4.18)

Sk = Rk− + Rk, (4.19)

Sk = HkPk−HT
k + Rk. (4.20)

Subsequently, the Kalman gain Kk is determined incorporating the innovation co-

variance Sk and the predicted state covariance Pk− in

Kk = Pk−HT
kS−1

k , (4.21)

and the state estimate x̂k and covariance Pk is updated using

x̂k = x̂k− + Kkγk, (4.22)

Pk = (I−KkHk)Pk−. (4.23)

However, in practice, real motions and measurements are rarely of linear kind e.g., a

vehicle that moves with a translational and rotational velocity on a circular trajec-

tory. A solution to this problem is the extended Kalman filter (EKF), which relaxes

the linearity assumption where the state transition probability and measurement

probabilities are governed by nonlinear functions f and h, respectively. Key idea

underlying the EKF is the linearization approximating the nonlinear function f by

a linear function that is tangent to f at the mean of the posterior µk−1. Beside

many linearization techniques EKF utilizes the first-order Taylor expansion which

69



4.2. EXTENDED KALMAN FILTER BASED POINT TARGET STATE
ESTIMATION IN SKID SCENARIOS

constructs a linear approximation by the partial derivative with respect to states xk

f ′(xk−1,uk) =
∂f(xk−1,uk)

∂xk−1

, (4.24)

h′(xk) =
∂h(xk)

∂xk
. (4.25)

Hence, f is approximated by its value µk−1 and the linear extrapolation is achieved

by a term proportional to the gradient of f at µk−1:

f(xk−1,uk) = f(µk−1,uk) +
∂f(xk−1,uk)

∂xk−1︸ ︷︷ ︸
=:Gk

(xk−1 − µk−1), (4.26)

and subsequent for nonlinear measurement function h

h(xk) = h(µ̄k) +
∂h(xk)

∂xk︸ ︷︷ ︸
=:Jk

(xk − µ̄k). (4.27)

where µ̄k are the mean of the a priori state x̂k−. Updated state transition and

measurement probabilities, for pEKF(xk|xk−1) and pEKF(zk|xk), are

pEKF(xk|xk−1,uk) = det(2πQk)
− 1

2

exp

(
−1

2

(
xk − f(xk−1,uk)

)T
Q−1
k

(
xk − f(xk−1,uk)

))
,

(4.28)

pEKF(zk|xk) = det(2πRk)
− 1

2

exp

(
−1

2

(
zk − h(xk)

)T
R−1
k

(
zk − h(xk)

))
, (4.29)

The full EKF procedure is then

x̂k− = f(x̂k−1,uk), (4.30)

Pk− = GkPk−1G
T
k + Qk, (4.31)

Kk = Pk−JTk (JkPk−JTk + Rk)
−1, (4.32)

x̂k = x̂k− + Kk

(
ẑk − h(x̂k−)

)
, (4.33)

Pk = (I−KkJk)Pk−, (4.34)

for a single prediction and update iteration.

Practical considerations: Fig. 4.4 shows the Kalman filter flow chart. Note

that the flow chart is identical for the EKF, besides that, the state transition and

measurement function are of a nonlinear kind and are linearized using a first-order

Taylor expansion. The following description is based on [TBF05].

The filter is initialized at k = 0 by the mean x0 and the covariance P0, e.g., a
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Figure 4.4: Kalman filter procedure.

distance to an object. In case k 6= 0, the Kalman filter input is the belief at k − 1,

represented by xk−1 and Pk−1. To update these parameters, the filter requires the

observation and, if available, a control vector, which provides information about the

motion of the ego-system. The output is the belief at time k, represented by xk and

Pk. The predicted belief x̂k− and Pk− is calculated based on the belief xk−1 and

Pk−1 one time step later, but before incorporating the measurement zk (Eq. 4.30

and Eq. 4.31).

This belief is obtained by incorporating the control vector, e.g., ego-system acceler-

ations. The mean is updated using the deterministic version of the state transition

function, with mean substituted for the state xk−1. The covariance is updated by

incorporating the Gk matrix since states depend on previous states through this

matrix. A central parameter in the update step is the Kalman gain Kk (Eq. 4.32).

It specifies the degree to which the measurement zk is incorporated into the new

state estimate.

Eq. 4.33 manipulates the mean, by adjusting it in proportion to the Kalman gain

Kk and the deviation of the actual measurement zk and the measurement predicted

according to the measurement probability. The key concept is the innovation, which

is the difference between the actual measurement zk and the expected measurement.

Finally, the new covariance of the posterior belief is calculated, adjusting for the in-

formation gain resulting from the measurement using Eq. 4.34.
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4.2.3 Nonlinear process model

For describing the vehicle motion, pitch and roll rate are neglected. The acceleration

a in the vehicle center of mass (COM) is given by

a = v̇ + ω × v,

=

 −v · sin(β)β̇

v · cos(β)β̇

0

+

 0

0

w

×
 v · cos(β)

v · sin(β)

0

 ,

=

 −v(w + β̇) sin(β)

v(w + β̇) cos(β)

0

 , (4.35)

where β is the side slip angle between vehicle longitudinal direction, β̇ is the side

slip angle velocity, velocity vector v of COM, v̇ is the first derivation of velocity and

w the yaw rate. This section is based on [KHD+17].

Compared to the original single track model [RS40], an additional force Fkick is

applied perpendicular to the rear axle. This force is similar to side wind effects

[Kam63]. The skid event causes high magnitudes of slip angles αf and αr at the

front and rear wheels as well as side slip angle β, thus small-angle approximation

shall not be employed.

Fig. 4.5 shows the geometry of the single track model. The equilibrium of forces

and momentum in lateral vehicle direction with respect to the kick plate force Fkick

are

ẇ = θ−1
(
Fy,f(αf) · lf · cos(δ)− Fy,r(αr) · lr + Fkick · lr

)
, (4.36)

β̇ =
1

m · v · cos β

(
Fy,f(αf) · cos(δ) + Fy,r(αr)− Fkick

)
− w, (4.37)

where δ represents the steering angle of the front wheel and θ the moment of inertia.

The mass m of the vehicle is centered in the COM, which has a horizontal distance

of lr from rear axle and lf from front axle. The lateral tire forces are defined by the

product of slip angle αf/r and corner stiffness cf/r in linear range

Fy,f/r = αf/r · cf/r. (4.38)

The slip angles αf/r are defined by the tires velocity vector vf/r. The longitudinal

velocities must be equal, since the vehicle is not stretched in longitudinal direction.

The difference of lateral velocities is caused by the yaw rate w. Thus, the slip angles

αf/r are defined [Sch14]

αf = − arctan

(
v · sin(β) + lf · w

v · cos(β)

)
+ δ, (4.39)

αr = − arctan

(
v · sin(β)− lr · w

v · cos(β)

)
. (4.40)
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Figure 4.5: Single track motion model sliding towards a target obstacle in a skid
scenario. The snapshot shows the force and momentum equilibrium of the model at
the application of the external kick plate force Fkick. For single track models, the
two wheels for front and rear axle are represented by one front wheel and one rear
wheel, respectively.

Using Eq. (4.36)− (4.40), a nonlinear model describing the vehicle horizontal motion

is derived

ẇ =
1

θ

(
cf · (αf + δ) · cos(δ) · lf − cr · αr · lr + Fkick · lr

)
, (4.41)

β̇ =
1

mv cos β

(
cf · (αf + δ) · cos(δ) + cr · αr − Fkick

)
− w, (4.42)

where steering angle δ and kick force Fkick are inputs of the model. For skid driving

situations the corner stiffnesses cf/r can not be assumed linear, as shown in Fig. 4.6.

The lateral tire force is not proportional to the slip angle. The lateral acceleration ay
is limited to approximately 1 g at favorable conditions and less if the road is irrigated.

A solution is to approximate the characteristic lateral forces of the road-tire-contact

using the Magic Tyre Formula by Pacejka et al [Pac66, Pac05].

Fy = D · sin
(
C · arctan

(
B · α− E · (B · α− arctan (B · α))

))
. (4.43)

The parameter B,C,D and E represent empirical values and tune the curve char-

acteristic. By D, the peak value is defined (for C ≥ 1) and with curvature factor

E, the curve can be additionally stretched or compressed. The factor BCD defines

the curve gradient in the coordinate system origin, which is equivalent to corner

stiffness at zero slip. The shape factor C scales the curve in x-direction, which is

derived from Fy,e and D. The parameter B,C,D and E also dominantly depend on

the friction coefficient µ and the wheel load.

Fig. 4.6 (a) visualizes the Magic Tyre Formula and Fig. 4.6 (b) shows a model sim-

ulation for dry, wet, snow and ice road surface conditions. As expected, the lateral
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Figure 4.6: Visualization of Magic Tyre Formula by Pacejka et al [Pac66, Pac05]
(a). Model simulation sweeping slip angle α from −0.5 to 0.5 for dry, wet, snow and
ice corresponding model settings for B,C,D,E (b).

tire force is maximal for dry conditions, as the friction coefficient is maximum and

decreases to the minimum for icy road conditions. The slip angle is input and an

adaptive corner stiffness is output of this model.

4.2.4 Extended Kalman filter implementation

In this work, an extended Kalman filter (EKF) is integrated to estimate the relative

position and velocity for a single, static target in skid scenarios. The vehicle motion

is determined by incorporating parameters from the proposed modified nonlinear

single track motion model considering an additional lateral force Fkick. The model

is used to determine β̇ and by integration the side slip angle β serving as an input

to the EKF.

Fig. 4.7 shows the geometric relation including a skidding ego vehicle and a present

target object. The sensor observations are measured in the coordinate system (SC).

Since the target object is assumed static, the relative object position and velocities

only depend on the ego vehicle motion. The extended Kalman filter (EKF) system

is presented in the following. The system states xk, the control vector uk and the

measurement vector zk of the vehicle are

xk = [xSC
k , ySC

k , vSC
x,k, vSC

y,k]
T, (4.44)

uk = [ax,k, ay,k, wk, vk, ψk, βk]
T, (4.45)

zk = [xSC
k , ySC

k , vSC
x,k, vSC

y,k]
T, (4.46)
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where xSC
k and ySC

k represent the relative target object position, vSC
x,k and vSC

y,k the

relative target object velocity in the sensor coordinate system.

The ego vehicle motion is estimated by dynamic data provided from an inertial

measurement unit (IMU). The measured motion data are the longitudinal and lateral

accelerations ax,k and ay,k, the yaw rate wk, by integration of the yaw rate the yaw

angle ψk, the velocity vk and the side slip angle (SSA) β from the proposed motion

model. The values are stored in the control vector uk in each time step k and serve

as input to the EKF. The control vector uncertainties are represented by U with

U =



σ2
ax 0 0 0 0 0

0 σ2
ay 0 0 0 0

0 0 σ2
w 0 0 0

0 0 0 σ2
v 0 0

0 0 0 0 σ2
ψ 0

0 0 0 0 0 σ2
β


. (4.47)

The ego vehicle position between time step k−1 and k is predicted assuming a point

mass motion considering the side slip angle which leads to a translation [∆xe,∆ye].

Fig. 4.7 shows the ego vehicle motion between two time steps. The translation

between two time steps, due to present ego vehicle velocity and yaw rate, is described

by

∆ψk =wk∆t, (4.48)

∆xe =vk cos(βk + ∆ψk)∆t+
∆t2

2
ax,k, (4.49)

∆ye =vk sin(βk + ∆ψk)∆t−
∆t2

2
ay,k, (4.50)

where ∆t = k1 − k represents discrete time step width. The motion to update

the position is twofold. First, the instantaneous velocity vk is split up in x− and

y−component by considering the total side slip angle (SSA) β and the yaw angle

shift since the last time step. The second component incorporates the longitudinal

and lateral accelerations. The ego vehicle translation parameter are transformed

into the sensor coordinate system using

ΓSCk−1→SCk =

cos(∆ψk) − sin(∆ψk) ∆xe

sin(∆ψk) cos(∆ψk) ∆ye

0 0 1

 . (4.51)

Accordingly, the position of the object is determined incorporating the previous

object position at time step k − 1 and the translation of the sensor coordinate
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Figure 4.7: Geometric description of instantaneous ego vehicle dynamics for time
step k−1 and k. The vehicle is skidding towards the target object. The relative tar-
get velocity has two components: the instantaneous ego vehicle velocity considering
the side slip angle β and the angular velocity due to the yaw rate component.

system at k using xy
1

SC
k

= Γ(SCk−1→SCk)−1

xy
1

SC
k−1

. (4.52)

The relative target velocity has two components: the instantaneous ego vehicle

velocity (translation) considering the side slip angle β and the angular velocity due

to the yaw rate component (rotation). The resulting relative target velocity can be

derived using Fig. 4.7 to

[
vx
vy

]SC
k

=

−vk cos(βk) + (
√

(x2
k−1 + y2

k−1) · sin(arctan( yk−1

xk−1
)− ψk) · wk

−vk sin(βk)− (
√

(x2
k−1 + y2

k−1) · cos(arctan( yk−1

xk−1
)− ψk) · wk

 . (4.53)

Hence, the ego motion state transition model can be expressed as

xk =f(xk−1,uk)

=


xk−1 cos(∆ψk) + yk−1 sin(∆ψk)− vk cos(βk + ∆ψk)∆t+ ∆t2

2
ax,k

−xk−1 sin(∆ψk) + yk−1 cos(∆ψk)− vk sin(βk + ∆ψk)∆t+ ∆t2

2
ay,k

−vk cos(βk) + (
√

(x2
k−1 + y2

k−1) · sin(arctan( yk−1

xk−1
)− ψk) · wk

−vk sin(βk)− (
√

(x2
k−1 + y2

k−1) · cos(arctan( yk−1

xk−1
)− ψk) · wk


SC

.

(4.54)

As described in section 4.2.2, the EKF uses a first-order Taylor expansion to linearize

the state transition model and propagate the state uncertainties Pk. Additionally,

the ego motion uncertainties U are propagated along with the state uncertainties

Pk and represent the total uncertainty of the ego motion:

Pk+1 = Gk

[
Pk 0

0 U

]
Gk

T , Gk =
∂f(xk−1,uk)

∂(x, y, vx, vy, ax, ay, w, v, ψ, β)

∣∣∣∣
x̂−,uk

. (4.55)
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The propagation incorporates the ego motion uncertainty into state space by another

linear approximation considering U and provides an approximate mapping between

motion noise in control space and motion noise in state space [TBF05].

The measurement vector zk provides data of the nearest radar cluster from the radar

cluster list. The determined relative position and velocity serves as input to the EKF.

The measurement uncertainty is described by the covariance Rk, is delivered by the

sensor and stored as

h(x̂) =


x 0 0 0

0 y 0 0

0 0 vx 0

0 0 0 vy


SC

, Rk =


σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
vx 0

0 0 0 σ2
vy

 , (4.56)

and subsequently the Jacobi matrix is

Jk =
∂h(x̂)

∂(x, y, vx, vy)

∣∣∣∣
x̂k−

. (4.57)

The initial values of the state vector and target position is derived from the latest

measurement before Fkick is applied.

4.2.5 Validation in skid scenarios

Kick plates are used to train driver reactions in unexpected skid situations to avoid

over- or understeering and transfer the vehicle back in a safe state [ABBP+11]. In

this work, the kick plate is used to transfer the vehicle, with mounted sensors, in skid

driving situations. Each test run includes three stages: the vehicle is accelerated

to an initial velocity, the rear axle is laterally shifted by the kick plate, causing the

vehicle to increase its yaw angle and side slip angle (SSA) while sliding across the

watered area with low friction. Eventually, the test driver attempts to stabilize the

vehicle while it is skidding towards the target. Fig. 4.1 shows a top view scenario

sequence during one test run taken with a drone.

In regular driving situations, no external force is applied and the test vehicle ap-

proaches the EVT straight at velocities between 30 km/h and 50 km/h without sig-

nificant steering inputs.The kick plate intensity determines the side slip angle of the

test run. The side slip angle is taken as a criticality criterion to distinguish between

regular dynamic scenarios and skid scenarios according to the test method in section

4.1. The SSA defines two groups of test runs: regular and skid scenarios. For regular

test runs, the maximal SSA is smaller than 5◦ and for skid scenarios, the angle is

larger than 5◦, respectively.

In the following, the proposed EKF is validated during a target-tracking task in

an exemplary regular driving and a skid scenario approaching a stationary target.

Fig. 4.8 and Fig. 4.9 present a comprehensive overview about the ego vehicle driving

dynamics (top figure), the achieved state estimation accuracy for position (second-

row figure) and velocity (third-row figure), the errors when the estimates are related
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Figure 4.8: EKF results for an exemplary regular driving scenario approaching a
static target. Overview about the ego vehicle driving dynamics (top figure), the
achieved state estimation accuracy for position (second-row figure) and velocity
(third-row figure), the errors when the estimates are related to a reference, the
uncertainty represented by ± 2 σ-bands and the side slip angle estimation (bottom
figure) based on the proposed motion model.
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Figure 4.9: EKF results for an exemplary skid scenario sliding towards a static
target. Overview about the ego vehicle driving dynamics (top figure), the achieved
state estimation accuracy for position (second-row figure) and velocity (third-row
figure), the errors when the estimates are related to a reference, the uncertainty
represented by ± 2 σ-bands and the side slip angle estimation (bottom figure) based
on the proposed motion model.
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to a reference, the uncertainty represented by ± 2 σ-bands and the side slip angle

estimation (bottom plot) based on the proposed motion model, respectively.

During the straight approaching scenario, shown in the top figure of Fig. 4.8, the

yaw angle and rate, as well as the SSA are almost zero. The position and velocity

estimates show a high accuracy compared to the reference sensor. The errors range

below 0.5 m and 1 m/s for x-, y-position and vx-,vy-velocities, respectively. The bot-

tom plot of Fig. 4.8 shows values close to zero.

Fig. 4.9 presents the EKF performance during a skid scenario sliding towards a static

target. The ego-vehicle rotates counter-clockwise due to the kick plate inducing a

maximal yaw rate of 35◦/s, maximal yaw angle of 20◦ and an absolute SSA in a sim-

ilar range, as shown in the top plot. To capture this motion the force Fkick is applied

to the proposed model for 4 cycles, as shown in the bottom figure. The number of

cycles with additional force is chosen empirically. The ego-vehicle rotation causes a

negative y-shift of the target position in the sensor coordinate system shown in the

second-row figure.

The position and velocity estimates show high accuracy compared to the reference

sensor. The maximal position errors are 0.9m and 1.7m for x- and y-position, re-

spectively. The maximal x-velocity error is at 1.3 m/s. Immediately after the kick

plate activation, where a high yaw acceleration is present, the lateral velocity error

has its peak with 4.7 m/s for one cycle and is drastically decreasing afterward.

The bottom figure of Fig. 4.8 shows the side slip angle estimation for several lateral

forces Fkick for the skid scenario. The reference side slip angle (red) and the esti-

mated side slip angle using the presented modified motion model with Fkick= 5 kN

(black) are presented, respectively. The variation of Fkick results in different side

slip angles. A common measure to assess tracking quality is to determine the root

mean squeare error (RMSE). This quantity expresses the standard deviation of the

estimation residuals, where a residual is a measure of how far a data point from the

regression line is, and can be expressed as

RMSE =

√∑K
k=1(x̂k − xREF )2

K
, (4.58)

where x̂k are the estimates from the proposed EKF and xREF are the vectorized

reference values obtained from the reference sensor. The RMSE values for both, the

proposed EKF and the series radar, are shown in the following table

Tracking system Scenario x̄, [m] ȳ, [m] v̄x, [m/s] v̄y, [m/s]

Proposed EKF Skid 0.38 0.73 0.43 1.54
Series radar Skid 0.66 1.48 1.46 5.67

Table 4.1: root mean squeare error (RMSE) for proposed EKF and series radar sensor
x, y, vx, vy-estimates in one skid test run.
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4.2.6 Conclusion

This section emphasizes an extended Kalman filter (EKF)-based target tracker in skid

scenarios, motivated by the insufficient performance of a state-of-the-art automotive

radar sensor. First, a test method was developed to evaluate the performance of a

series radar sensor in real skid scenarios. A test vehicle was equipped with a state-

of-the-art automotive radar sensor as the device under test, an IMU as a motion data

source and a reference sensor. The sensor system was tested in real skid situations

using the novel test method. The vehicle side slip angle was used as a criticality

criterion to classify test runs in regular and skid scenarios. The automotive radar

sensor performance was presented and discussed to emphasize the problem.

As a solution to this problem, the section presents an extended Kalman filter (EKF)

using a modified motion model to estimate the relative position and velocity of a

static object in skid scenarios. The section presents a comprehensive derivation of

the utilized methods and validates the tracking performance with real vehicle tests

carried out on a test site. The proposed EKF significantly increases the accuracy

of the estimated relative parameters compared to an automotive radar sensor. The

motion model of the EKF estimates the side slip angle using the modified motion

model considering an additional lateral force. The model is validated with real

vehicle tests in skid driving situations. Based on these results, further development

effort to enable dynamic object tracking and a generic activation strategy seem

appropriate as future work.
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4.3 Particle filter based extended object state es-

timation in pre-crash scenarios

Recent progress in radar development enables high-resolution radar sensors to re-

solve multiple detections for an extended object. One of the main challenges in

radar-based object detection and tracking is the handling of an uncertain mea-

surement model problem dealing with wandering dominant scatter points on the

extended object surface, see section 1.3. This phenomenon needs to be considered

for close extended object tracking in critical driving situations, e.g., for safety appli-

cations. This section presents a SMC tracking framework, also referred to as particle

filter (PF), using an extended object measurement model to incorporate multiple

wheel hypotheses per target object. The signal processing approach, presented in

section 3.2, estimates wheel position and bulk velocities for imminent objects eval-

uating the micro-Doppler signals. These signals are generated by rotating target

wheels, which serve as input to the SMC tracking framework. The presented ap-

proach covers the signal processing from raw radar sensor data processing to ex-

tended target state estimation. The procedure is evaluated on real experimental

data where a target vehicle executes safety-critical dynamic evading maneuvers.

4.3.1 Sequential Monte-Carlo method

The sequential Monte Carlo (SMC), also referred to as particle filter (PF), is an

approximate solution to the Bayes recursion, which is applicable to nonlinear non-

Gaussian process and observation models. They are an alternative to Gaussian

techniques since nonparametric filters do not rely on a fixed functional form of the

posterior. Rather they approximate posterior densities by a finite number of values

(or samples) representing a region in the state space. For large number of samples

nonparametric techniques tend to converge to the correct posterior [TBF05].

The key idea is to represent probability distributions of interest by a set of random

samples with associated weights, which is an equivalent representation of the prob-

ability density [GSS93]. The SMC method is used for target states estimation due

to the high nonlinearity of motion and measurement model. This section presents a

brief derivation of the sequential Monte Carlo (SMC) approximation. The notation

and principle description is based on [GRA04]. Additional further literature can be

found in e.g. [AMGC02, C+03, Dau05, DGA00, DDFG01, TBF05].

One considers N � 1 independent and identically distributed (i.i.d.) samples {xi}Ni=1

from an arbitrary probability density p(x). For any function of g(x) the expectation

Eg{g(x)} can be numerically evaluated by

Eg{g(x)} =

∫
g(x)p(x) dx ≈ 1

N

N∑
i=1

g(xi). (4.59)
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The empirical expectation is unbiased and will almost surely converge to the true

expectation according to the law of large numbers. The rate of convergence depends

on the number of independent samples N , hence the samples can be regarded as a

point mass approximation of p, i.e.,

p(x) ≈ 1

N

N∑
i=1

δ(x− xi), (4.60)

where δ is the Dirac delta. Commonly, it is not possible to sample efficiently from p.

A solution is the application of the importance sampling procedure. N independent

and identically distributed (i.i.d.) samples {xi}Ni=1 from a known density q are drawn,

which is similar to p and referred to as importance density. These samples are

weighted to receive a weighted point mass approximation to p. The expectation of

g can be approximated by the empirical expectation

Eg{g(x)} =

∫
g(x)p(x) dx ≈ 1

N

N∑
i=1

wig(xi), (4.61)

with

wi =
w̃(xi)
N∑
j=1

w̃(xj)

, (4.62)

w̃(xi) =
p(xi)

q(xi)
, (4.63)

where wi are the normalized importance density weights and w̃ are the importance

weights. For large N , the empirical expectation still converges to the true expecta-

tion and hence, we can consider the weighted random samples {(wi,xi)}Ni=1 as point

mass approximation of p

p(x) ≈
N∑
i=1

wiδ(x− xi). (4.64)

The normalization ensures that all weights sum up to one. The critical operation in

particle filtering is to enable a recursive Bayesian state estimation. Therefore, the

importance distribution q and weights wi need to be estimated using the density

from the previous time step k − 1 and the actual observation at time k. Particle

filter methods differ in the generation of the importance distribution q. In this work,

the sequential importance resampling (SIR) technique is applied.

The joint posterior density p(Xk|Zk,uk) at time k, where Xk = {xj, j = 0, ..., k}
represents the sequence of all target states up to time k, is represented by a set of

random samples with associated weights and uk is the control vector at time step

k. Accordingly, the posterior density pk(Xk|Zk) at time k is represented as set of
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Algorithm 1 SIR Particle Filter

1: procedure SIR PF({xik−1}Ni=1,uk, zk)
2: for i = 1 to N do
3: sample xik ∼ p(xik|xik−1,uk)
4: wik ∝ p(zk|xik)
5: end for
6: for i = 1 to N do
7: w̃ik = (sum[{wik}Ni=1])−1 · wik
8: end for
9: [{xik}Ni=1]=RESAMPLE[{xik, w̃ik}Ni=1]

10: return {xik}Ni=1

11: end procedure

weighted particles {Xi
k, w

i}Ni=1 and can be approximated as [GRA04]

pk(Xk|Zk) ≈
N∑
i=1

wikδ(Xk −Xi
k), (4.65)

wik = wik−1

p(zk|xik) p(xik|xik−1,uk)

q(xik|Xi
k−1,Zk)

. (4.66)

This density is not suitable for practical applications, since the path up to Xi
k−1,

and all observations Zk needs to be stored. Therefore, the importance densities

dependence is reduced to xk−1 and zk that q(xk|Xk−1,Zk) = q(xk|xk−1, zk). The

estimate of the marginalized posterior density p(xk|Zk) and modified weights become

pk(xk|Zk) ≈
N∑
i=1

wikδ(xk − xik), (4.67)

wik ∝ wik−1

p(zk|xik) p(xik|xik−1)

q(xik|xik−1, zk)
. (4.68)

The importance density assumption relaxes the requirement for large data buffers

since q(xk|xk−1, zk) requires only the state xk−1 from the previous time step k − 1

and the actual observation zk.

The importance weight variance increase over time and has a negative effect on the

accuracy [DGA00]. As a consequence, a divergence of the filter due to imbalanced

normalized weights after a small number of recursive steps. A solution to overcome

the degeneracy problem is to eliminate samples with low importance weights by

replacing them with samples that have high importance weights so that the random

measures {(xik, wik)} are replaced by {(xi∗k , 1/N)}. One suitable method to achieve

the replacement is called the sequential importance resampling (SIR) technique.

Therefore, the transitional prior p(xk|xik−1) with zero-mean Gaussian process noise

is used as importance density. Since we apply a resampling step at every time index

and set the importance weights to wik−1 = 1/N for all i = 1, ..., N there is no need

to pass on the importance weights from one time step to the next. The relationship
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{(wik,xik)}Ni=1

Figure 4.10: Representation of the sequential importance resampling (SIR) algorithm
of the particle filter.

(4.68) simplifies to

wik ∝ p(zk|xik). (4.69)

The sequential importance resampling (SIR) particle filter predicts samples from

previous time step k−1 using the process model representing the system with addi-

tional process noise followed by a subsequent approximation based on an evaluation

of the measurement likelihood.

The full sequential importance resampling (SIR) particle filter routine for one it-

eration is shown in algorithm 1. There are various resampling subroutines in the

literature, but for this work, the low variance sampling is used.

As a brief overview, the basic idea is to decide which particle is replaced involves

another stochastic process [TBF05]. This resampling algorithm draws a scalar sam-

ple from a Gaussian distribution and selects particles according to this number.

These particles exhibit still a probability proportional to the sample weight. This is

achieved by drawing a random number s in the interval [0;N−1] and the algorithm

iteratively selects particles by adding the fixed amount M−1 to the random num-

ber s and by choosing the particle that corresponds to the resulting number. The

particle i, for which the following expression holds true is selected

i = arg min
N

N∑
m=1

w̃
[m]
k ≥ (s+ (m− 1) ·M−1). (4.70)

Practical considerations: Fig. 4.10 shows an exemplary particle filter procedure

sequence. A set of particles {N−1,xik−2}Ni=1 starts at time k = −2. The parti-

cles provide an approximation of the initial probability distribution p(xk−2). In the

next step, the importance weights wik−1 are computed using the information avail-

able at time k − 1, e.g., a set of observations. This results in the weighted measure
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{(wik−1,x
i
k−1)}Ni=1 yielding an approximation p(xk−1|Zk−1). Subsequently, the resam-

pling step replaces particles with a small weights by copies of the fittest particles to

obtain the unweighted measure {(N−1,xi∗k−1)}Ni=1. The resampling is accomplished

using the sequential importance resampling technique, which uses Eq. 4.70. Finally,

the prediction step introduces variety, resulting in the measure {(N−1,xi∗k−1)}Ni=1,

which is an approximation of p(xk|Zk−1) [DDFG01].

4.3.2 Related work

A current state of the art overview for extended object tracking is given in [GBR16].

Besides giving an overview of popular tracking procedures, the authors cluster

the main measurement likelihood methods in groups. The first group assumes

a set of points on a rigid body (SPRB) with a deterministic number of reflection

points fixed on a rigid body shape, which was applied to automotive radar data in

[BY06, HLS12, HSSS12, GSDB07]. The second method for extended object track-

ing defines a spatial distribution to model the target detections around the target.

The first approach proposed by Gilholm et al. [GGMS05] assumes the number

of detections as Poisson distribution. The third paradigm models the measurement

likelihood based on physical properties. A direct scattering extended object model is

presented describing the radar measurements like range and Doppler shift as several

probability distributions [KSD16]. The last method is based on machine learning,

e.g., a variational Gaussian mixture measurement model is developed where each

mixture component can be interpreted as a particular reflection center [SD18].

Another approach is to incorporate all available measurements using extended ob-

ject measurement methods and Bayesian state estimation techniques under certain

assumptions, e.g., where a radar model considering actual radar sensor resolution is

taken into account [HSSS12] or an assumed elliptical object shape [RS04, SP03].

A spatial model-based approach of an extended object was presented by Knill et

al. [KSD16]. A direct scattering model for high-resolution radars is used to track

single extended vehicles. The model assumes vehicles as boxes with an approxi-

mately rectangular shape and estimates the joint measurement likelihood for every

detection. The measurement likelihood is calculated considering individual likeli-

hoods for range, velocity and angle for each detection. The model is deployed in

a Rao-Blackwellized particle filter (RBPF) dividing the state vector in a nonlinear

subroutine estimating the target motion and a linear subroutine estimating the ob-

jects geometric.

Kellner et al. [KBK+16] presents an approach to incorporate multiple radar reflec-

tions from an extended object where the authors take the Doppler velocity distribu-

tion across the entire object into account. The key assumption is to eliminate the

target object rotational proportion of the radial velocity. The object velocity vector

of interest is derived using a regression method for multiple detections backscattered

from the extended object. The object tracking is realized using a KF with different

observation models to evaluate tracking performance.

In contrast, Yang et al. [YGMB07] analyzed the range-Doppler profile of an ex-
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tended target. The authors developed a maneuver indicator based on the rotational

velocity component of the radial velocity, which leads to multiple Doppler velocities

in a single range cell.

Another method to model the target object is to apply finite set statistics. In

this concept, the representation of present targets, measurement detections, motion

models and measurement models are modeled as random variables summarized in

random sets. A introduction is given in [GLGO14, Mah07]. The posterior density

over this multi-object state is then estimated recursively in a similar fashion to the

standard Bayes filter [Mah07]. Since both, the object states and the measurements,

are modeled as RFS, association ambiguities and clutter can be treated probabilis-

tically and are filtered over time.

A RFS approach based on labeled multi-bernoulli (LMB) filter in multi-sensor multi-

object traffic scenarios is presented by Scheel et al., where the object states, mea-

surements, clutter and missed detections are modeled as RFS [SKRD16]. The mea-

surement model from [KSD16] is used to fuse target-level observations from two

radar sensors. Cluttered measurements originated from spinning wheels next to

static obstacles and close to road borders are stated as a significant difficulty for the

association procedure.

Scheel et al. [SD18] presents a variational radar model for tracking vehicles using

radar detections which are processed by a RFS-based filter. The measurement model

is a variational Gaussian mixture approach trained using real radar data, where the

authors include measurement positions deviation between the expected Doppler ve-

locity and the measured Doppler velocity. It is used to determine a predictive density

for radar detections given a particular state.

In this work, a RFS-based extended object measurement model estimating the mea-

surement likelihood to incorporate the preprocessed wheel hypotheses deployed in a

particle filter environment.

4.3.3 Process model

This section presents the target motion model evolution over time, discusses the

state parameterization and discretized motion model.

Successful target tracking requires an appropriate motion model representing the

target state evolution over time and should further perform highly accurate in di-

verse driving scenarios. During the last decades, various mathematical models to

describe the target motion have been developed and reported in the literature, such

as [LJ03, BP99, BSWT11]. The challenge for object state estimation is to achieve

a balance between tracking accuracy and the computational complexity of the mo-

tion model. Less sophisticated models, e.g., constant velocity (CV) or constant

acceleration (CA), have the main advantage in their linearity, allowing an optimal

propagation of the state probability distribution but do not consider rotations, e.g.,

the yaw rate.

More sophisticated models, e.g., the constant turn rate and velocity (CTRV) model
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Figure 4.11: The target relative position and dynamics is estimated for its center of
motion. The measurements model is based on up to four extracted wheels from the
raw radar data.

or constant turn rate and acceleration (CTRA) model, also referred to as curvilinear

models, take rotations around the z -axis into account. Overall, the latter curvilin-

ear models describe the motion of road vehicles in low dynamic scenarios sufficiently

accurate. To model the motion in high dynamic scenarios, e.g., drifting or skidding,

the side slip angle and varying nonlinear tire forces need to be taken into account.

However, Schubert et al. [SRW08] evaluates the CV, CTRV, CTRA and constant

curvature and acceleration (CCA) model by incorporating the motion models along

with global positioning system (GPS) data in several unscented Kalman filter (UKF)

and evaluated the results with the GPS reference data. It has been shown, that the

CTRA model exhibit more accurate performance than the CTRV model and at the

same time, is computational less complex than the CCA model.

Hence, in this work, the CTRA model [GSDB07] is used to determine the target

states

ξk = [ζxk , ζyk , ψk, vk, wk, v̇k]
T , (4.71)

where ζxk and ζyk are the target motion center (center of rear axle) coordinates

in the sensor coordinate system, ψk is the heading angle, vk is the velocity in the

heading direction of the object, wk is the yaw rate and v̇k is the acceleration at

time k respectively, see Fig. 4.11. The states propagate over time according to the

discretized state transition model

ξk = ξk−1 +



∆ζxk
∆ζyk
ψ̇k−1 T

v̇k−1 T

0

0


+



0

0
T 2

2
eψ̈k−1

T 2

2
ev̈k−1

T eψ̈k−1

T ev̈k−1


, (4.72)
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with

∆ζxk = ζxk − ζxk−1
= cos(ψk−1) K1 − sin(ψk−1) K2, (4.73)

∆ζyk = ζyk − ζyk−1
= sin(ψk−1) K1 + cos(ψk−1) K2, (4.74)

and

K1 = vk−1 T +
v̇k−1 T

2

2
+
ev̈k−1

T 3

6
, (4.75)

K2 =
vk−1ψ̇k−1 T

2

2
+

(vk−1eψ̈k−1
+ 2v̇k−1ψ̇) T 3

6

+
(ev̈k−1

ψ̇ + v̇k−1eψ̈k−1
) T 4

8
+
ev̈k−1

eψ̈k−1
T 5

20
, (4.76)

where noise terms are constant for a single time step T with T = tk − tk−1, and

eψ̈k , ev̈k are white zero-mean Gaussian noise processes with variances σ2
ψ̈

and σ2
v̈ ,

respectively.

4.3.4 Particle filter implementation

Fig. 4.11 introduces the coordinate systems required for this approach. The raw

data signal processing, presented in section 3.2.1, to detect the micro-Doppler based

features and obtain characteristic wheel hypotheses, is applied to every radar mea-

surement snapshot. The measurement model incorporates the position and radial

velocity information for each wheel hypothesis.

A brief definition for random finite set (RFS), according to [Mah07], is given as:

Assuming a random variable Υ that draws its instantiations Υ = Y from the hy-

perspace Υ0 of all finite subsets Y (the null set ∅ included) of some underlying space

Υ0. In this case, the underlying space Υ0 is a Euclidean vector space, e.g., Υ0 = Rny .

The approach exploits the RFS property, that the measurement likelihood p(z|x)

incorporating the wheel hypotheses, is capable of processing varying numbers of de-

tected wheels or an empty set.

The general measurement model is briefly presented in the following and based

on [Mah07]. A single sensor with state x∗ and the following likelihood function

fk+1(z|x) , fWk+1
(z− ηk+1(x,x∗)), (4.77)

is observing a scene. The following probabilities for detections generated by a target,

a missed detection and clutter are introduced:

� probability fk(z|x), the target will generate observations z if it has state x,

referred to as pD(x,x∗).

� probability pD(x), the target will not generate an observation, referred to as

missed detection with probability 1− pD(x).
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� probability ck|k(Z), a set Z = {z1, ..., zm} of clutter observations will be gen-

erated and assumed as Poisson distributed ck|k(Z) = eλλnk|kck|k(z1) . . . ck|k(zm),

where observations and clutter are independent.

Based on these assumption the true likelihood function fk+1(Z|X) for point targets

can be derived to

fk+1(∅|X) = e−λ
∏
x∈X

(1− pD(x)), (4.78)

fk+1(Z|X) = eλfC(Z) · fk+1(∅|X)∑
θ

∏
i:θ(i)>0

pD(xi) · fk+1(zϑ(i)|xi)
(1− pD(xi)) · λc(zϑ,(i))

, (4.79)

where the summation is taken over all association hypotheses ϑ, X = x1, . . . ,xn,

Z = z1, . . . , zm and

fC(X)(Z) = e−λ(X)
∏
z∈Z

λ · c(z). (4.80)

Eq. (4.78) and Eq. (4.79) represent the true likelihood for point targets.

In the following, this standard model is extended to a single extended target like-

lihood model to incorporate multiple observations from the target per iteration

[Mah07]. The true measurement likelihood for a single extended object is modeled

as RFS. Given the sensor with state x∗, probability of detection pD(x,x∗) and like-

lihood function fk+1(z|x) , fWk+1
(z − ηk+1(x,x∗)). As presented in section 4.3.3,

the general state of the extended target is

ξ = [ζx, ζy, ψ, v, w, v̇]T . (4.81)

The extended target is modeled as a collection of point scatterers, representing the

wheel positions and velocity, fixed on the target surface

x̆1 + x , ..., x̆Lw + x. (4.82)

The scatter points x̆1, ..., x̆Lw incorporate the wheel hypotheses and, therefore have

the form

xlw = [xlw , ylw , 0, vd,lw , 0, 0]T . (4.83)

The detection probability plwD (x,x∗) depends on the visibility function elw(x,x∗),

which describes the occlusion state of the scatter point, e.g., one wheel is occluded

by another wheel and therefore unlikely to be visible to the sensor, by

elw(x,x∗) =

{
1 if scatterer point is in LoS

0 if otherwise

}
. (4.84)
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The probability of detection of point scatter x̆lw + x is then

plwD (x,x∗) = elw(x,x∗) · pD(x̆lw + x,x∗). (4.85)

Likewise, the deterministic measurement model at the point scatterer x̆lw + x

ηlw(x,x∗) , ηk+1(x̆lw + x,x∗), (4.86)

and the corresponding likelihood function is

f lwk+1(z|x) , fWk+1
(z− ηlw(x,x∗)). (4.87)

In case there is no measurement assigned to a point scatterer the empty set is defined

as

∅lw(x,x∗) = ∅plwD (x,x∗), (4.88)

where ∅lw(x,x∗) is the random subset of hyperspace Υ0. Hence,

Pr(∅lw(x,x∗) = T ) ,


plwD (x,x∗) if T = Υ0

1− plwD (x,x∗) if T = ∅
0 if otherwise

 . (4.89)

The random set measurement model at site x̆lw + x is

Υ lw(x,x∗) = {ηlw(x,x∗) + Wlw} ∪ ∅lw(x,x∗) (4.90)

for all point scatterers, where W1, ...,Wlw are i.i.d. random vectors with density

function fWk+1
(z). The measurement model over all point scatterers is thus

Σk+1 = Υ(x) ∪C, (4.91)

where Υ(x) are detections generated by the target, C represent the false detections

and Υ(x) = Υ1(x)∪ ...∪ΥLw(x). Therefore one can extend the belief-mass functions

at a single point scatter from using Eq. (4.78) and Eq. (4.79) and

� plwD (x,x∗) for pD(xi,x
∗),

� ηlw(x,x∗) for ηk+1(xi,x
∗)

� f lwk+1(z,x∗) for fk+1(z|xi)

for Z 6= ∅ to

fk+1(Z|x) = eλfC(Z) · fk+1(∅|x)
∑

Θ

∏
Θ(lw)>0

plwD (x) · f lwk+1(zΘ(lw)|x)

(1− plwD (x)) · λc(zϑ(lw))
, (4.92)
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and for Z = ∅

fk+1(∅|x) = e−λ
Lw∏
lw=1

(1− plwD (x)). (4.93)

For this thesis, the clutter term fC(Z) is neglected. The clusters possess predefined

positions on the structure, represented by {νlwx,k, νlwy,k, vlwd } where lw = 1, ..., Lw are

the detected wheels and νlwx,k, ν
lw
y,k and vlwd are the corresponding x- and y-coordinates

and the radial velocity component for each hypothesis, respectively. Accordingly,

the measurement vector for Z 6= ∅ at time step k is

zk =
[
ν1
x,k, ν

1
y,k, v

1
d,k, . . . , ν

Lw
x,k , ν

Lw
y,k , v

Lw
d,k

]T
. (4.94)

The deterministic measurement model ηlw(x,x∗) is composed of three individual

components transcribing the object position and velocity in measurement space.

The first and second component describes the conversion from polar sensor coordi-

nate system to the Cartesian vehicle coordinate system from the wheel clusters. The

third component determines the object expected Doppler velocity for every wheel

hypothesis, which can be measured by the sensor.

The velocity vector of any given point on the extended object is independent of

range and described through the radial proportion of the superposition of the object

translational and rotational velocity [KSD16]

vlwd (θ, w, ψ) = v cos(θ − ψ) + w(νy cos(θ)− νx sin(θ)). (4.95)

The term f lwk+1(zΘ(lw)|x) describes the measurement probability for a given state.

The probabilities are determined using the predicted states and the observations as

wheel hypotheses delivered by the sensor and the pre-processing stage as Gaussian

distributions

N (zΘ(lw),x,Rzlwk
), (4.96)

where measurement uncertainty for a single wheel is set as white Gaussian noise

described by the covariance Rzlwk
with

Rzlwk
=

σ2
x 0 0

0 σ2
y 0

0 0 σ2
vd

 . (4.97)

Eq. (4.94)-(4.97) parameterize the measurement likelihood Eq. (4.92). Generally

speaking, it is a measure of how the predicted states and the measurement in mea-

surement space resemble. The data association for single extended object generated

radar detection is coped using the simple yet effective global nearest neighbor ap-

proach with a minimum threshold. The particle filter implementation utilizes the
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motion model, presented in section 4.3.3, the measurement model, presented in this

section and the prediction and update procedure presented in section 4.3.1.

4.3.5 Validation in pre-crash scenarios

This section presents an evaluation of the proposed SMC-based tracking methods.

The tracking results are evaluated using the identical measurement setup, as pre-

sented in section 3.2.2, enabling comprehensive parameter validation. Again, radar

sensor measurements were conducted using a real vehicle as target object equipped

with a RTK reference measurement system to evaluate the presented methods. The

target vehicle is equipped with a GeneSys ADMA-G-Pro+ with RTK positioning to

obtain the ground truth global position estimate with an accuracy of ±0.02 m and

acceleration and turn rate data in three-axis for arbitrary positions of the target

vehicle.

A high dynamic evading maneuver in front of the radar sensor is the evaluation sce-

nario. These test runs are safety-critical when the test driver attempts to avoid an

imminent collision at the very last moment. Fig. 3.7 describes the critical evading

maneuver and its driving dynamics. The top figure visualizes the wheel positions of

the target vehicle. The center and bottom figures show the target velocity and yaw

rate. The actual dynamic target parameters are presented in Fig. 4.12 and Fig. 4.13.

The dashed graphs in each subfigure show the true target states.

SMC implementations generate and propagate particles in a random manner, where

the state estimation results may be distorted. The results are averaged over 20 runs

to minimize these effects [SD18]. The dimensions of the deterministic measurement

likelihood model for x- and y-position from the wheels was matched to the target

vehicle. The values for target wheelbase and tread are set to 3 m and 2 m, respec-

tively. The target length and width to evaluate detections are set to 5 m and 2 m.

Fig. 4.12 shows the estimates x-, y-position and velocity compared to the true target

states measured with a RTK reference system. The target vehicle approaches the

sensor with 11 m/s, which leads to a collision if the test driver does not execute an

evading maneuver to avoid the collision.

The top figure presents the number of detected wheel hypotheses. The subsequent

figures present the x-, y- and v estimates (solid lines), the true target motion (dashed

lines) and ±2σ standard deviation of the estimate for each cycle. An error plot for

each parameter is shown. The error values for x and y state estimates range between

−0.2 m and 0.4 m. The velocity error has its maximum at 0.3 m/s.

The wheel detection procedure detects a minimum of two wheels up to cycle 41,

which leads to an overall accurate target state estimation. The resulting accuracy

is as expected since the target is with its full extent in the sensor FoV. From time

step 42, the number of detected wheel hypotheses decreases to one, which leads to

increased uncertainty for the measurement model, and hence, to a decreased track-

ing performance.
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Figure 4.12: SMC-based target state estimation results for x-, y-position and velocity
v compared to the true target states measured with a real-time kinematic (RTK)
reference system. The top figure shows the number of detected wheel hypotheses
per measurement cycle.
The subsequent plots present the values for each x-, y- and v parameter (solid lines),
the true target motion (dashed lines) and ±2σ standard deviation of the estimate
for each cycle. Additionally, an error plot for each parameter is presented. The error
values for x and y state estimates range between −0.2 m and 0.4 m and the velocity
error has its maximum at 0.3 m/s. Notably is the increase of the error values at the
end of the measurement where the target is at the FoV edges, therefore by the sensor
seen under large angles, and the number of detected wheels decreases.

Fig. 4.13 presents the state estimates for yaw angle ψ, yaw rate w and acceleration

a (solid lines) compared to the true target states measured with a RTK reference

system. Again, the true target motion (dashed lines) and ±2σ standard deviation

of the estimate for each cycle are indicated and error plots for each parameter are

presented. Again, the error for all parameters are comparably low when two or more

wheels are detected and increase, notably when the detected wheels drop to one per

measurement cycle. The error values for ψ, w and a state estimates range up to 20 ◦,
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Figure 4.13: SMC-based target state estimation results for yaw angle ψ, yaw rate
w and acceleration a compared to the true target states measured with a RTK ref-
erence system. The top figure shows the number of detected wheel hypotheses per
measurement cycle.
The subsequent plots present the values for each ψ-, w- and a parameter (solid lines),
the true target motion (dashed lines) and ±2σ standard deviation of the estimate
for each cycle. Additionally, an error plot for each parameter is presented. The
error values for ψ, w and a state estimates range up to 20 ◦, 40 ◦/s and 1.2m/s2,
correspondingly. Notably is the increase of the error values at the end of the mea-
surement where the target is at the FoV edges, therefore by the sensor seen under
large angles, and the number of detected wheels decreases.

40 ◦/s and 1.2m/s2, respectively. At the end of the scenario, only the rear part of

the target vehicle is in the sensor FoV and this remaining part is illuminated under

large azimuthal angle leading to the decreased tracking performance.
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4.3.6 Conclusion

This section presents an extended object tracking framework for vehicles incorporat-

ing positions and bulk velocities of detected spinning wheels as a novel procedure.

The pre-processing procedure detects the position and corresponding bulk velocities

for rotating wheels by evaluating the micro-Doppler effect, which serves as input

for the enhanced object tracking procedure. The wheel hypotheses are forwarded to

the SMC-based extended object tracking framework to estimate the target dynamic

states. The RFS-based measurement model, embedded in the SMC-framework, is

capable of incorporating multiple wheel hypotheses backscattered of an extended

target object in dynamic driving scenarios, e.g., safety-critical evading maneuvers.

The performance was evaluated with real vehicle tests where critical evading driving

scenarios are reproducibly reconstructed and results proofed high accuracy for both

position and dynamic state estimation.
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4.4 Summary

This chapter introduced the principles of target object tracking focused on pre-crash

environment perception. The chapter provided an overview of Bayesian state esti-

mation and presented three fundamental filter designs: the Kalman filter (KF), the

extended Kalman filter (EKF) for nonlinear state estimation and the particle fil-

ter (PF).

Besides theoretical principles, the chapter opened up with a real-world survey eval-

uating the performance of a series radar sensor. The carrier vehicle is transferred

in skid driving scenarios using a novel test method. The vehicle with the mounted

radar sensor is transferred in skid scenarios and the radar tracking performance

proofed poor accuracy in position and velocity estimation measuring a static radar

target.

To enhance the tracking performance in skid driving situations, one of the contri-

butions in this thesis comprises a modified, nonlinear vehicle motion model, which

is used to estimate parameters of the horizontal vehicle motion during a skid event.

Subsequently, an extended Kalman filter (EKF) was designed to track the static tar-

get object using automotive radar signals as input for this novel filter. The system

is tested and evaluated under realistic conditions using a test vehicle equipped with

state-of-the-art automotive sensors in skid scenarios. The filter state estimates are

compared to the true target motion measured with a reference system and show a

significantly improved accuracy than compared to the series sensor as mentioned

above.

The next section presented another contribution, a solution to an uncertain mea-

surement model problem, where wandering dominant scatter points on the extended

object surface depends on the relative orientation and motion. A subsequent track-

ing procedure to incorporate target wheel hypotheses from the previous chapter is

enfolded. The positions and velocity of spinning target wheels serve as fixed and

characteristic points on the target vehicle and are suitable for subsequent tracking.

The particle filter (PF)-based tracking framework determines the position and cor-

responding dynamic parameters for single targets based on wheel hypotheses and is

evaluated in real evading maneuvers.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

In this thesis, novel techniques for radar-based target detection and tracking in

dynamic pre-crash scenarios, as well as for ghost object identification, have been

developed. This chapter summarizes the scientific contributions, emphasizes their

practical value for the proposed approaches and provides an outlook for subsequent

future work.

First, the two-fold problem of an uncertain measurement model due to a wandering

dominant scatter point on the target surface and corresponding challenge for accu-

rate target tracking in low-range configurations has been considered. The proposed

method presents a procedure to estimate target wheel positions and corresponding

bulk velocities based on radar sensor data. The scientific contribution is to spatially

resolve the micro-Doppler signals, generated by the rotating wheels of the target

vehicle, to determine characteristic scatter points of the target. As a consequence,

the effect of wandering dominant scatter point on the surface of extended objects is

mitigated. A micro-Doppler parameter is defined, which quantifies detections that

are with high probability generated by the rotating target wheels. These detections

are processed to estimate the wheel position and corresponding bulk velocities of

the target, referred to as wheel hypotheses. The proposed method is evaluated in

dynamic driving scenarios, where the driver performs an emergency evading action

to avoid a collision. The results proof feasibility of the proposed method and enable

extended object tracking, incorporating the novel target information.

Subsequently, a sequential Monte Carlo (SMC)-based extended object tracking frame-

work for vehicles incorporating positions and bulk velocities of detected spinning

wheels procedure is developed. The wheel hypotheses are forwarded to the sequen-

tial Monte Carlo (SMC)-based extended object tracking framework to estimate the

target position and dynamic states. The random finite set (RFS)-based measure-

ment model, embedded in the sequential Monte Carlo (SMC)-framework, is capable

of incorporating multiple wheel hypotheses backscattered of an extended target ob-

ject in a high dynamic driving scenario, e.g., safety-critical evading maneuvers. The

tracking performance was evaluated in real vehicle test runs, where critical evading
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driving scenarios are reproducibly reconstructed and results proofed high accuracy

for both position and dynamic state estimation.

Second, the thesis emphasized the ghost object generation problem due to mul-

tipath propagation in pre-crash scenarios. Radar sensors, perceiving the immediate

lateral vehicle environment, show an elevated ghost object presence due to a higher

probability illuminating potential reflection surfaces, e.g., road boundaries or build-

ings. At times, these ghost objects appear to be on a collision trajectory with the ego

vehicle, whereas the vehicles are in uncritical driving scenarios, e.g., an urban inter-

section. One target object may generate multiple false-positive targets in real-world

driving scenarios. Based on the propagation and reflection behavior of electromag-

netic waves, a geometric multipath model is derived, illustrating the occurring mul-

tipath reflections on real-world surfaces, e.g., buildings or road-bounding barriers.

The proposed geometric propagation model describes the relative positions of the

false-positive reflections and is validated with extensive real radar sensor data. A

custom reflector target mounted on a platform, creating deterministic point targets

as dominant backscatter centers of a vehicle body, validated the different multipath

reflections and the overall accuracy of the model. Moreover, radar measurements of

a vehicle during an intersection scenario prooved relevance to multipath reflection

behavior and confirmed the model assumptions. The results identify the emerging

challenges for the correct interpretation of false-positive targets to enable sophisti-

cated automotive safety-, comfort- and automation applications.

Third, the relevance of skid scenarios with high magnitudes of side slip angles in pre-

crash phases is highlighted and a tracking procedure is developed. Therefore, a novel

test methodology, to non-destructively transfer vehicles with mounted surround sen-

sors in skid situations, is developed and a survey analyzing a state-of-the-art radar

sensor revealed object tracking improvement potential. A test vehicle, equipped

with a state-of-the-art automotive radar sensor and a reference sensor, was tested in

real skid situations using a kick plate and a standardized radar target. The method

utilizes the side slip angle as a criticality criterion, which may be adjusted by the

kick plate. Subsequently, a modified motion model is derived, estimating side slip

angles in these skid driving situations and serves as input for an extended Kalman

filter (EKF)-based target tracking procedure. The contribution emphasizes the es-

timation of horizontal vehicle motion using the proposed modified, nonlinear single

track model considering an additional lateral force applied to the vehicle rear axle.

Based on these results, an extended Kalman filter is designed estimating the target

object relative position and velocity in skid scenarios and validated both, the track-

ing and side slip angle estimations in real car tests using the above-mentioned test

method.
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5.2 Outlook

This section discusses briefly possible future work.

Spatially resolved micro-Doppler signals and tracking: The procedure to determine

target wheel positions and corresponding bulk velocities perform well with real data

from proposed measurements. As a next stage, real-time implementation and exten-

sive validation with experimental data, covering a wide range of pre-crash sensor-to-

target configurations, seem appropriate. Procedure improvement possibilities may

be realized by the application of sophisticated estimation methods for data seg-

mentation and processing, e.g., machine learning [LHDW16, PRV+19, SHDW18].

Additionally, a wheel labeling procedure to label each wheel seems beneficial for

future tracking states.

Target tracking in skid scenarios: Based on the achieved performance, the next

EKF development stage is an extension for dynamic target object tracking. The

modified motion model is suitable to map high yaw rates and side slip angles real-

world relevant in, e.g., multi-collision scenarios. Alternative model-based side slip

angle estimations [CH08, YHL09] may serve as additional input for the tracking

procedure to further enhance tracking accuracy.

Multipath propagation in uncertain environments: Further investigations on mul-

tipath reflections for automotive radar sensors are carried out to analyze the influ-

ence also on the object velocity estimation as well as extend the target types also by

vulnerable road users, e.g., pedestrians. Observations and literature proof a shifted

velocity signal for each false-positive object [BMS+18, VHZ18].
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