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Abstract 
 

The development of device 
drivers in the automotive industry is 
often confronted with the problem of 
not yet available hardware, which can 
be used for testing. This paper 
describes how to build up a test 
environment in Simulink, which 
contains a model of the physical and 
logical behavior of an intelligent smart 
power switch that is used to control 
multiple bulbs in a car. To get a 
closed-loop simulation, a bulb model 
was developed, which calculates the 
current depending on voltage and 
temperature for diagnostic purposes. 
By using this configurable 
environment, it was possible to 
develop and test a driver with 
TargetLink, although the device, 
which it has to control, was not yet 
available. In order to get experience 
in HIL tests using the interface 
between CANoe and Simulink, this 
approach was analyzed in detail. 

 



 

 1 

1 Introduction 
The software development for electronic control units in automotive applications 

was affected by a rapidly rising deadline pressure in the last years. More and 

more functions should be implemented in less time. This causes a decreasing 

testing time, since it is hard to shorten the time that is needed to program new 

features. Today, the effectiveness of the development- and quality assurance 

processes becomes a decisive factor for the capability of the product [1].  

A new method, which is able to shorten both, implementation and testing time, 

is the model-based software development. It affects all parts of the software 

development process, i.e. the requirement management, software design, 

implementation and testing. This method should help to reduce the complexity 

of the software by using a more abstract view. It is even possible to reduce size 

and runtime by using code optimization modules for certain microcontrollers.  

One of the aims of model-based development is to get an executable model of 

the functionality at an early stage. It is possible, for example, that the logical 

behavior of a component is completely described in a model, so that a 

specification sheet with all its ambiguities is not needed any longer. This model 

can be used as basis for the stepwise refinement of the interface description in 

the software design process. If the model meets all the requirements, it is 

possible to generate C-code for a specific target microcontroller automatically. 

Another advantage is that the model can be tested with simulations of the real 

hardware. This reduces the test equipment needed, e.g. if an electric motor can 

be replaced with a correct model of its physical behavior. At the same time 

there is a rising variety of the test cases, because parameters, which are not 

constant over the life-span of the product, can easily be changed in the 

simulation. For this reason, it is possible to test whether the software can 

handle these variable parameters. 

Even if the software has to control semiconductors, like the Smart Corner Light 

Switch (SCLS), a lot of possible faults can be avoided if all the material 

tolerances (dependencies on temperature, silicon, etc.) can be set to their 

maximal and minimal values. 
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2 Development of a model of the SCLS 
2.1 Description of the SCLS 
Modern cars contain about 50 to 80 electronic control units (ECUs). One of 

them is the body computer module. This device is used for applications with 

high current consumption, like wiper, seat heater and lighting. Previously, these 

loads were switched with relays.  

The next step of development was the invention of Smart Power Switches, 

which consisted of MOSFETs that were able to carry high current. Nowadays, 

these semiconductors are able to protect themselves against various faults and 

to inform the microcontroller about their state. 

The disadvantage of these devices is that the analysis of this information takes 

a lot of the microcontroller resources. Furthermore, a malfunction of the CPU 

would cause a failure of the complete lighting.  

Because of this, Continental Temic and a manufacturer of semiconductors 

develop a new generation of high side power switches, the Smart Corner Light 

Switch. This ASIC contains five internal MOSFETs and a gate driver for one 

external MOSFET. Therefore, one SCLS can control all bulbs in one corner of 

the car: 

Output SCLS front SCLS rear 

Out1 Parking light Tail light 
Out2 Low beam License light 
Out3 High beam Rear drive light 
Out4 Fog light Stop light 
Out5 Indicator Rear indicator 
FETout Spare Rear fog light 

Table 1: Typical loads 
 

A mirror of the current through the bulbs is routed to the microcontroller. The 

desired output can be selected via the SPI interface. Control and diagnostic 

features are done via SPI, too. In normal case, the SCLS can produce pulse 

width modulation (PWM) for all outputs. If a fault was detected (e.g. a 

microcontroller chrash), it is possible to control the most important functions 

(emergency and hazard light) by external inputs.  
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There are three different faults, which can be detected separately for the first 

five outputs: Open load, overcurrent and overtemperature. Overcurrent 

surveillance is very important in order to prevent short circuits, which would 

damage the cables or destroy the SCLS. The inconvenience of this 

measurement is the nonlinear characteristic of the connected bulb. In the 

simplest case, a standard halogen bulb is switched on at room temperature. In 

the first few milliseconds after switching it on, the current can be ten times the 

nominal one. The SCLS has three different current thresholds to satisfy this 

behavior. Figure 1 shows a typical bulb characteristic, which is enveloped by 

the overcurrent window: 

 

Figure 1: Bulb characteristic (blue) and overcurren t thresholds (red) 
 

It is possible to configure each output for connected halogen bulbs, xenon bulbs 

or LEDs. The frequency and duty cycle for the PWM are generated by a clock 

signal that has to be applied at an input of the SCLS. For diagnostic purposes, it 

is possible to route one of the scaled output currents to a sense output. This is 

done by an internal multiplexer, which can be controlled via SPI. When 

receiving a command, the SCLS simultaneously sends one of three possible 

answer messages, containing the fault bits for the outputs and the device 

status. 
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2.2 Approach of modeling 
The model of the SCLS was developed according to a simplified version of the 

V-model, in order to follow standardized software engineering processes. There 

are a lot of tools like IRqA, DOORS or INNOVATOR to support these processes 

for larger projects with several participants. Due to the small size of the project, 

the V-model, as shown in figure 2, was used as guideline, but with 

simplifications.  

 

Figure 2: V-model [3] 
 

2.2.1 Requirement analysis 

First of all, a requirement analysis had to be made. Basis for this was the 

datasheet of the SCLS, to understand its behavior and features. Another source 

was the possibility to run a VHDL simulation of the real hardware, in order to 

solve ambiguities and vaguenesses in the datasheet. 

A product of this analysis is a list of requirements, which are separated to the 

several modules of the SCLS. It was paid attention to the following criteria of 

“good” requirements: 

• Atomic – a single description for each requirement 

• Clear – no ambiguities 

• Complete – explicit description of all requirements 

• Correct – no discrepancies between different requirements 



 

 5 

• Numbered – a unique identification for each requirement 

• Testable – at least one test case per requirement 

 

Table 6 shows an exemplary excerpt of the requirements list: 

ID Requirement Source 

3.1 The SCLS switches into fail mode if LIMP is logical 1 for 
more than 10ms (tLIMP) 

datasheet 

3.7 PWM is deactivated and the state of the output depends 
only on the ON bit if the frequency of the CLOCK input is 
less than 2.0kHz (fLCLK_det). 

datasheet 

4.1 All outputs with ON=1 are switched on simultaneously at 
a rising edge of CLOCK if their phase settings are equal. 

datasheet 

5.4 The time measurement for the current thresholds starts 
with latching the ON bit into the input registers. 

VHDL 
simulation 

7.1 The SCLS is in sleep mode if VBAT < VBAT_POR datasheet  

Table 2: Requirements to the SCLS model 
 

With the assignment between a requirement and a distinct module of the SCLS 

(as given with the first digit of the ID), it is even possible to verify the 

functionality of the subsystems at an early stage, without having them combined 

to the whole model. After the model is completed, it can be tested whether the 

parts fit together by applying the test cases again. 

 

2.2.2 Used tools 

2.2.2.1 Matlab 

Matlab is first of all an environment for linear algebra and numerical analysis, 

created by The Mathworks. Its name stands for “MATrix LABoratory”, because 

the fundamental data type is a matrix. Matlab can perform various actions on 

matrices or vectors without using ‘for’ loops. The instruction set is optimized in 

speed and RAM usage for working on matrices. Because of this, Matlab allows 

a comfortable management of test vectors, including the possibility to plot and 

analyze the output vectors. 

Automated sequences can be described in the Matlab script language and can 

be stored in so-called m-files. Matlab contains a lot of toolboxes for a wide area 

of usage, i.e. in control design, optimization, data acquisition or statistics. The 
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most famous add-on is the Simulink toolbox, which will be described in the 

following chapter. 

 

2.2.2.2 Simulink 

Matlab is a useful tool for preparing and analyzing test cases, but the modeling 

and the simulation are done in Simulink. This toolbox provides a graphical 

interface for “visual programming” of the information flow. It consists of a set of 

block libraries for various applications, such as for example signal processing, 

fuzzy logic or neural networks. 

A block is the basic object in Simulink. Its attributes can be configured as 

constants or as variables from the Matlab workspace. Several blocks that are 

used for one task can be combined to a subsystem that has input and output 

ports. Thereby, it is possible to segment a model by building a hierarchy of 

subsystems. The Simulink solver is able to work with a variable- or fixed-step 

sample time. For discrete systems and code generation it is recommended to 

use a fixed sample rate with a discrete solver. Only this allows a sensible 

creation of test vectors, because every time step has a defined value. 

 

2.2.2.3 TargetLink 

TargetLink is a production-quality code generator created by dSpace, which is 

completely integrated in Matlab/Simulink. It mainly consists of special blocks, 

similar to the standard Simulink ones, but with additional settings for scaling, 

logging and overflow detection. Another important block is the TargetLink Main 

Dialog, which offers a lot of adjustments for the code generator. Subsystems 

that should be regarded for code generation have to be contained in a special 

TargetLink subsystem, which acts as interface to the remaining model in the 

different kinds of simulation. 

TargetLink works with three different simulation modes: 

• In model-in-the-loop (MIL) simulation, all calculations are done by using 64-

bit floating-point variables. The model runs completely in Simulink, without 

regarding the scalings. This produces a reference for the following modes. It 

is also possible to detect overflows if limitations are correctly set. 
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• After the code generation and build process, it is possible to run a software-

in-the-loop (SIL) simulation. This means that the blocks in the TargetLink 

subsystem are replaced by a Simulink s-function, which contains the 

generated code. In this mode, all effects of fixed-point arithmetic take place. 

The results can be compared with the reference from the MIL simulation in 

order to control whether the loss of accuracy can be accepted or not. 

• In processor-in-the-loop (PIL) simulation, it is even possible to compile the 

code and execute it on an evaluation board that is connected to the 

development environment. In addition to the normal logging features, it is 

possible to measure the runtime and the stack-size needed. 

 

These features allow that the development of algorithms (often done in 

Simulink) and the implementation and coding (normally done by hand) can be 

accomplished without changing the toolchain. 

 

2.2.3 Development environment 

The model of the SCLS is placed in a development environment for the high-

level driver shown in figure 3. It contains the HLD itself, the SCLS model and 

instances of the bulb model for the six outputs. 

 
 

Figure 3: Development environment for the HLD 
 

inputs 

outputs 
high-level driver 

Smart Corner 
Light Switch 

connected loads 
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The green blocks on the left are stimulating the HLD with the test vectors of the 

Matlab workspace. They simulate the requests and instructions, which are 

normally sent by the application software. Fault bits and sense values are 

normally returned to the application. In the development environment, these 

values are saved to variables in the workspace. This is done by the red block on 

the lower left. 

There is one closed loop between HLD that transmits the SPI messages and 

SCLS, which feeds back the answers. Another one is between SCLS and the 

bulb model, which calculates the current depending on voltage and temperature 

and returns these values to the SCLS. 

 

2.2.4 Verification of the SCLS model 

The quality of the SCLS model plays a very important role for the development 

of the driver, because the model-based approach is only sensible if the modeled 

system is free of faults. Otherwise, it could be possible that the driver works 

perfectly in the simulation, but not with the real hardware. Therefore, the model 

has to take a wide set of tests. 

 

2.2.4.1 Creation of test cases 

All developed test cases are directly derived from the list of requirements. It is 

documented which test case covers which requirement and vice versa. A test 

case describes the principle procedure of the test. These are the test steps and 

the expected results.  

The real SCLS is tested with an automatic test rack. Some test cases are 

adopted from this automatic test specification, in order to have a possibility to 

compare between simulation and reality. 

 

2.2.4.2 Explanation of the test environment 

Matlab and Simulink are of course not able to work with this description in 

natural language. Therefore, every test case has to be converted into test 

vectors that have a defined value for each time step and for each input. For the 
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decision whether a test was correct or has failed, it is important to have vectors 

with the expected output values, too. Since the SCLS model has 42 inputs and 

37 outputs, it is hard not to loose the overview.  

To handle this complexity, a tool named CTE XL 1.6 was used. The term stands 

for “Classification Tree Editor eXtended Logics”. The classification tree method 

was developed in 1993 by Grochtmann and Grimm [3]. It requires the 

segmentation of all possible input vectors into different classes. For example, 

the input Phase1 has only 0°, 90°, 180° and 270° as po ssible values. The editor 

allows the creation of dependence rules, e.g. that PWM1 has to be zero if ON1 

is equal to zero. Figure 4 shows the editor and explains the denomination “tree 

editor”: 

 

Figure 4: Screenshot CTE XL 
 

Each class has its possible values as subnodes. Together with the time steps 

on the left frame, this forms a grid, where dots can be placed. Only one dot is 

possible per time step and variable. This sets the corresponding variable to the 

desired value at the desired time. 
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CTE XL allows the export of data to many different file formats. The export to 

Matlab generates an m-file that creates a structure in the Matlab workspace. 

This structure can be analyzed and segmented to the different test vectors with 

the help of a simple script. 

Another script loads the parameters for the SCLS model and starts the 

simulation automatically. The resulting output vectors have to be compared with 

the expected vectors. Therefore, the script generates a figure with a plot of both 

signals for each output. The deviations can be analyzed by visual control. 

Figure 5 shows an exemplary output of the test script. It plots the expected 

signal as a blue line and the real outputs as a dashed, red line. If the expected 

and the real signal are equal, both lines overlap each other to a red-blue 

dashed line. 

 

Figure 5: Plot of expected (blue) and real (red) ou tputs 
 

It is also possible to create a script that runs all test cases in sequence and lists 

only the ones with differences between expected and real outputs. 
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3 Explanation of the bulb model 
3.1 Reasons for using a bulb model 
Normally, a bulb is regarded as a simple resistor, which is true as a first 

approximation. Its filament is made up of metal (tungsten) and Ohm’s law is 

valid. But on closer examination, it can be seen that its resistance is not 

constant, but depends on the temperature. Halogen lamps heat up to about 

2700K [4], which causes a huge difference between the resistance at room 

temperature and operating temperature. The effect to the current through the 

bulb is shown in figure 1. It can rise to about ten times the nominal current 

shortly after switching on the voltage. This is quite normal and must not be 

treated as short circuit. To validate the behavior of the software in this case, all 

tests in the development of body controllers are done with original loads and not 

with ohmic resistors.  

For the modeling in Simulink, these original loads have to be replaced by a bulb 

model. This offers a wider range of feasible tests. For example, it is possible to 

simulate the switching of a lamp at an ambient temperature of -40°C – simply by 

changing a parameter. 

Another decisive factor for the current curve is the duty cycle. If a bulb is driven 

with a very low duty cycle at low temperature, it might perhaps not heat up fast 

enough to have a current, which is below the third overcurrent threshold 

(OCLO). The ECU software has to avoid that by heating the bulb with higher 

duty cycle in the first milliseconds and setting the lower duty cycle afterward. 

The model of the SCLS needs a feedback of the output current, because it only 

computes the voltage and the current depends on the connected load. Of 

course, the values of the current inputs can be defined in the test vectors. But it 

is easier and closer to reality if the values are calculated by a bulb model. Real 

short circuit and open load conditions can thereby be simulated by routing back 

either the bulb current, no current or an extremely high current. 

This method of reconnecting the outputs to the inputs is called closed-loop 

simulation, because the feedback is done in the model itself and is not 

determined by external input vectors.  
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3.2 Physical basics 
Behind the bulb model are a few formulas of thermodynamics and electrical 

engineering. They are based on three simplifications: 

(1)  All electrical energy is converted to heat. Normally, about 5% of the whole 

energy is emitted as light. 

(2) There is no additional heating by the other bulbs in the headlights. All heat 

comes from the own electrical power. 

(3) The only mass that is heated up is the tungsten filament in the lamp. It is 

assumed that the proximate environment (e.g. the glass of the bulb) is not 

heated up. 

 

The aim of the calculations is to get a current depending on voltage, 

temperature and time. First of all, current depends on voltage and resistance 

according to Ohm’s law: 

 

 
R

U
I =  (3.1) 

 

The resistance of a metal varies with changing temperature as shown in the 

following equation where R20 is the resistance at 20°C and α is the temperature 

coefficient of the material. The temperature of the filament in °C is the 

variableϑ . 

 

 ( )[ ]CRR °−⋅+⋅= 20120 ϑα  (3.2) 

 

By considering the different forms of energy, it is possible to get a correlation 

between power and temperature. According to the first law of thermodynamics, 

the energy flowing into a system is equal to the sum of the increase in the 

internal energy of the system and the work done by the system. This is valid 

under consideration of simplifications (1) and (2) and leads to equation (3.3): 

 

 outheatel QQW +=  (3.3) 
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The electrical energy in a resistive load is determined by voltage, current and 

time: 

 

 tIUtPW elel ⋅⋅=⋅=  (3.4) 

 

The increase of internal energy, which heats the filament, can be described as 

follows: 

 

 TcmQheat ∆⋅⋅=  (3.5) 

Variables of this equation are the mass m of the filament, the specific heat 

capacity c of tungsten and the difference ∆T between the initial temperature and 

the temperature of the hot filament.  

A part of the energy is emitted as heat. Its magnitude depends on the thermal 

resistance Rth between bulb and ambience. Since the initial temperature of the 

filament is equal to the ambient temperature, ∆T in equation (3.5) is the same 

as in equation (3.6). 

 

 t
R

T
Q

th
out ⋅∆=  (3.6) 

 

Applying this to equation (3.3) leads to: 

 

 t
R

T
TcmtP

th
el ⋅∆+∆⋅⋅=⋅  (3.7) 

 

It is possible to get a first-order differential equation after division by an infinitely 

small time step ∆t: 

 T
R

T
dt

d
cmP

th
el ∆⋅+∆⋅⋅= 1

 (3.8) 
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By application of the Laplace transform and setting all initial conditions to zero, 

a transfer function can be set up: 

 
{ }
{ }

thR
scm

sH
1

1

PL

TL
)(

el +⋅⋅
=∆=  (3.9) 

 

Since the simulation is a discrete system, a Z-transform of this continuous 

function has to be used. This can for example be done with the Tustin 

approximation (also called bilinear transform): 

 1

12

+
−⋅=

z

z

T
s

sample  (3.10) 

 

Inserting this in equation (3.9) leads to the final discrete transfer function used 

in the bulb model: 

 ( )













 ⋅⋅−+












 ⋅⋅+⋅

+=

samplethsampleth T

cm

RT

cm

R
z

z
zH

2121

1
 (3.11) 

 

Since it is known that the temperature of the filament is approximately 2700K in 

steady state [4], it is possible to determine the thermal resistance. This can be 

calculated by setting the derivative of the temperature difference ∆T in equation 

(3.8) to zero, which leads to the following formula: 

 

 
W

K

W

K

P

T
R

el
th 50

55

2700 ≈=∆=  (3.12) 

 

The following list gives an overview of the used constants: 

Temperature coefficient of tungsten:  
K

1
108.4 3−⋅=α  [5] 

Specific heat capacity of tungsten:  
Kkg

J
c

⋅
= 143   [5]  

Mass of the filament:    mgm 35≈   (estimated) 
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Thermal resistance (bulb to ambience): 
W

K
Rth 50≈   (calculated) 

R20 of a 55W halogen bulb (H7):  Ω≈ 24.020R   (measured) 

 

3.3 Translation into Simulink 
Modeling the bulb in Simulink is not difficult if the above shown equations are 

known: 

 

Figure 6: Model of a 55W bulb 
 

The voltage U is divided by the resistance, which depends on temperature. 

Result of this division is the current I that is multiplied with the input voltage to 

get the electrical power. Calculating the temperature difference from the power 

is done by the discrete transfer function. Testing the behavior at different 

temperatures is possible by changing the value of the ambient temperature. 

The current curve is determined by four parameters. The magnitude of the peak 

depends on R20 and the ambient temperature, because initially after switching 

the bulb on, it has not heated itself and the resistance is mainly determined by 

these two values. A lower temperature or a smaller resistance increases the 

initial peak. 
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Decisive for the time, until a steady state is reached, is the value of 
sampleT

cm ⋅⋅2
 in 

the transfer function. A higher mass extends this time, because more energy is 

necessary to get the same operating temperature. The used value of 10J/Ks 

with a sample time of 0.001s leads to a mass of the filament of 35mg. This 

estimated value is confirmed by the technical support of the bulb manufacturer 

OSRAM. Typical values for the filament’s mass in halogen bulbs are between 

23mg and 35mg. 

If the steady state is reached, the derivation of the temperature in equation (3.8) 

becomes zero. This causes a linear correlation between electrical power and 

temperature, determined by the thermal resistance Rth as described in equation 

(3.12). The model uses a value of 50K/W. Increasing it leads to less current in 

steady state, because the temperature (and thus the electrical resistance) rises, 

since the transfer of heat is hampered. 

Knowing the effects of these parameters allows testing the SCLS driver e.g. 

with bulbs that need a longer time to reach the steady state. 

 

3.4 Exemplary outputs 
This chapter shows the output (current vs. time) of the model for a battery 

voltage of 12V, which is switched on at t=0.05s, and different duty cycles. The 

current peak, when the bulb is switched on, is clearly visible. 

 

Figure 7: Output of bulb model (100%) 
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If the voltage is pulse width modulated, the filament cools down in the off-time of 

PWM. This can be seen in figure 8, where the current at the beginning of one 

pulse is higher than at the end of the pulse before, if the temperature has 

reached its operational value. 

 

Figure 8: Output of bulb model (50%) 
 

More detailed diagrams and a comparison to real bulb currents are given in 

chapter 5. 

 

4 Driver description 
4.1 Task system 
Controlling the SCLS requires four functions that have to be called in defined 

time intervals:  

• The high-level driver itself, which prepares the data to send. 

• The SPI driver, which manages the transmission to e.g. four Corner Light 

ICs by using daisy chain. 

• The AD converter that reads the current sense value. 

• The application, which controls the HLD. 

 

The SPI driver can not be called from the HLD, because the HLD function is 

only written to control one device. In contrast, the SPI driver has to wait until all 

four HLDs have set up their commands. Since the SCLS resets its fault 
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registers after sending their content to the microcontroller, and buffering the 

data requires a lot of memory, it was determined to call the SPI driver exactly 

once between two calls of the HLDs. Hence, a loss of data is avoided.  

This method even works in an OSEK system, if both functions are invoked in 

one task. The application and the AD conversion run independent of the drivers. 

Realistic values are an interval of 5ms between the driver calls and an 

execution of the application every 20ms. Timing of the AD conversion depends 

on the sampling method. 

Another problem is multiplexing the current sense. To save the few AD 

channels of the microcontroller, all current sense outputs are connected to the 

same pin of the microcontroller. Therefore, it has to be ensured that only one 

SCLS delivers its sense current at any given time. Since the HLD function is 

only an instance that doesn’t know about the other ones, a superior logic is 

necessary to determine, which instance is able to route one of its outputs to the 

processor.  

Figure 9 shows the chronology of function calls: 

 

Figure 9: Sequence of function calls 
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4.2 Initialization and reset 
After switching on its supply voltage, the SCLS needs a defined initialization 

procedure: 

• Waking the device by setting the reset pin (RSTB) to high level and applying 

the clock signal. 

• Sending an initialization message with WD=1 to trigger the watchdog and 

SOA=2 to clear an eventually set Clock-fail flag. This message also contains 

the XenonB bit. 

• Sending a message to configure the outputs as LED or bulb. 

 

Since the driver has outputs for RSTB, Clock and message address that are 

only calculated once in one step, it is not possible to change them frequently 

within one function call. For example, the SIA can only have exactly one value 

in each simulation step, because it is only one output of the model. It is not 

possible to assign SIA=0 (Initialization message) and SIA=1 (Config OL 

message) in one function call. Thus, the driver needs to be called three times to 

perform the complete initialization procedure.  

If the microcontroller switches into sleep mode, the SCLS has to sleep, too. 

Otherwise it would recognize fail mode (because the SPI watchdog is no longer 

triggered) and activate the emergency light. Therefore, the driver has to take 

care that the RSTB pin is pulled to low level in this case. 

To satisfy these requirements, the driver provides two inputs, called 

AppActivateSCLS and AppResetSCLS. The former named is the more 

important. If it is zero, the SCLS is set to sleep mode. A transition from zero to 

one starts the initialization. As long as it does not return to zero, the driver is 

ready for use. This is accomplished by holding a state counter that is increased 

in each initialization step and remains constant if the normal operational mode 

is reached. If using just the activateSCLS bit, the application can perform a 

reset of the SCLS (e.g. after detecting a fault) only by resetting it to zero and 

increasing it to one in the next cycle, which would be approximately 20ms later.  

This is the typical use case for the resetSCLS bit: Setting it to one resets the 

state counter and thereby the SCLS. Thus, the re-initialization of the device can 
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start with the next call of the HLD, i.e. 5ms later. In this case, activateSCLS 

stays at logical one for the whole time and resetSCLS is set back to zero within 

the following execution of the application. Since the integrator is only reset after 

a positive edge, it is no problem that the value of resetSCLS remains one until 

the next application call. 

 

Figure 10: State machine 
 

The following figure shows a timing diagram with the different signals. Setting 

activateSCLS to one enables the modified integrator (a standard integrator 

would increase currentState one step after its enable input is set to one), which 

has its output limit set to three. When currentState has reached the value three, 

enableNormal is set to one and enableInit is reset. 

 

Figure 11: Timing diagram 

t

t

t

t

t

activateSCLS 

resetSCLS 

currentState 

enableNormal 

enableInit 
1

3

1

1

1

1

2



 

 21 

The outputs enableInit and enableNormal control the execution of two other 

subsystems of which only one is processed in one simulation step. One 

performs the initialization procedure and the other one works in the normal 

operational mode. Figure 12 below shows the Init subsystem: 

 

Figure 12: Init subsystem 
 

It again consists of three subsystems that are routed through the switch, 

according to the state counters value. They simply set the values for RSTB, 

Clock and the SPI message that has to be transmitted. This performs the above 

shown initialization procedure. The inputs for Xenon and LED configuration 

make sure that the corresponding bits are set during the init phase. 

 

4.3 Message scheduling 
As described above, it is difficult to send more than one message between two 

HLD calls, since this would require the use of buffers for the received 

messages. Therefore, a compromise has to be found to manage the various 

duties that have to be fulfilled: 

• Output states have to be updated according to settings given by the 

application (Control Out x message). 
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• Alternating requests for the three different answer messages have to be 

made (Initiaization message). 

• The channel of the internal multiplexer must be changed after a time that 

was long enough to sample the complete signal of one output (Initialization 

message). 

 

These requirements are obstructing each other, because e.g. during the output 

states are updated, it is not possible to change the answer message or the 

multiplexer channel. Therefore, a schedule of messages, which considers all 

requirements, was set up: 

Schedule nr. Time Message SIA SOA 
0 0.000 Initialization 0 0 
1 0.005 Control Out 1 9  
2 0.010 Initialization 0 1 
3 0.015 Control Out 2 10  
4 0.020 Initialization 0 2 
5 0.025 Control Out 3 11  
6 0.030 Initialization 0 0 
7 0.035 Control Out 4 12  
8 0.040 Initialization 0 1 
9 0.045 Control Out 5 13  
10 0.050 Initialization 0 2 
11 0.055 Control Out 6 14  

     
Table 3: Normal schedule of messages 

 

The advantage of this sequence is that a fault is reported at least within 25ms 

after its occurrence. For example, if open load happened at t<0.010s, it is 

reported in the message received at t=0.010s. If it appears later, it is definitely 

acquainted at t=0.035s as answer to the Initialization message at t=0.030s. If 

SOA is not changed, because another message than Initialization is sent, the 

answer would have the same SOA as in the step before. 

Alternating with the Initialization, the messages to control the outputs are sent, 

independently of whether the request has been changed or not. This approach 

assures that, when the SCLS has lost its settings (e.g. if it was reset), all 

outputs are working correctly not later than 60ms afterwards. 

These are quite good values, but it could happen that an output has to be 

switched on faster. Therefore, the schedule was enhanced to regard so-called 

high-priority messages. It is possible to set a high-priority bit for each output and 
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for Initialization, which discontinues the normal sequence to send a distinct 

message. 

To prevent the other messages from starving out, only three high-priority 

messages can be sent between two regular Initialization messages. Three 

conditions need to be fulfilled, to interrupt the schedule: The high-priority bit of a 

message is set, less than two high-priority messages were sent since the last 

regular Initialization message and the settings of the addressed output have to 

be unequal to those already sent. 

Table 4 shows the worst-case were the schedule is interrupted as much as 

possible:  

Schedule nr. Time Message SIA SOA 
0 0.000 Initialization 0 0 
 0.005 high priority message   
 0.010 high priority message   
 0.015 high priority message   
1 0.020 Control Out 1 9  
2 0.025 Initialization 0 1 
 0.030 high priority message   
 0.035 high priority message   
 0.040 high priority message   
3 0.045 Control Out 2 10  
4 0.050 Initialization 0 2 
 0.055 high priority message   
 0.060 high priority message   
 0.065 high priority message   
5 0.070 Control Out 3 11  
6 0.075 Initialization 0 0 
 0.080 high priority message   
 0.085 high priority message   
 0.090 high priority message   
7 0.095 Control Out 4 12  
8 0.100 Initialization 0 1 
 0.105 high priority message   
 0.110 high priority message   
 0.115 high priority message   
9 0.120 Control Out 5 13  

10 0.125 Initialization 0 2 
 0.130 high priority message   
 0.135 high priority message   
 0.140 high priority message   

11 0.145 Control Out 6 14  
     

Table 4: Worst-case sequence of messages 
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This could only happen if the settings for the duty cycles are changed in every 

application call. Considering the timing, it is shown that a fault is acquainted at 

the latest after 55ms. This is short enough for diagnosis, because the main 

protection is done in the SCLS. The time after which all outputs are surely 

updated is 150ms. Through the possibility to set the high-priority bits for more 

time-critical outputs, this should be short enough, too. 

There is no explicit high-priority bit for the ‘Config OL’ message, because it is 

internally set to one. Since this message does not appear in the schedule, LED 

configuration is always handled as high prioritized task. 

Figure 13 shows the subsystem that is enabled after the initialization was 

performed. It gets the desired duty cycles (AppPWMx) and the already 

transferred ones (PWMx). According to the set high-priority bits, it determines 

the SIA and fills up the message with the correct values. 

 

Figure 13: Normal subsystem 
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The most important block in figure 13 is the DetermineMessage subsystem. It 

manages the above described decision, whether to send a high-priority 

message or to continue with the normal schedule. Therefore, it handles a 

variable called HpCounter, which is increased after each high-priority message 

and reset after a regular Initialization message. The Merge block feds through 

its most recent updated input, i.e. the current enabled ‘if/else’ subsystem. 

 

Figure 14: DetermineMessage subsystem 
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If there are more high-priority messages at the same time, the order of 

execution is defined by the positions in the ‘If’ subsystem. Anyway, only one 

message per simulation step is possible and the others have to wait until the 

next step (perhaps even until the next regular Initialization message was sent). 

The ‘If’ block enables the first subsystem, whose condition is true. All the other 

blocks are then disabled in this step, even if their condition is fulfilled, too. For 

example, if the inputs ‘u2’ and ‘u5’ are both logical true, the ‘elseif’ block for ‘u2’ 

will be enabled first.  

In theory, it is possible that some lower positioned messages will never be 

transferred. But this could only happen if there are more messages with 

permanentely changing values. This case is very unlikely and if it happens 

nevertheless, the corresponding output will be at least updated within the 

regular schedule. This is guaranteed by the schedule, shown in table 4, where 

every message is sent at least once within 150ms, even in worst-case. 

The scheduling is done in the ‘else {}’ block. The current schedule index is 

stored in a Unit Delay block outside the subsystem, because otherwise its state 

would be reset if the block is disabled during sending of a high-priority 

message. 

The internal structure of the Schedule subsystem is shown in figure 15: 

 

Figure 15: Schedule subsystem 
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It is mainly divided into three parts. The yellow part on the lower left increases 

the index of the schedule and resets it when the maximum value is reached. 

The green part determines the current SIA and SOA, according to the schedule 

index. Furthermore, it decides whether the high-priority counter should be reset. 

To do this, it uses discrete look-up tables. A normal Simulink look-up table 

would cause a huge overhead in the generated code, because special search 

and interpolation functions will be inserted, although they are not needed for 

these integer variables. A discrete look-up table, in contrast, generates an 

array, which is accessed by the schedule index. 

Another way could be the calculation of SIA and SOA out of the index by using 

integer divisions and modulo operations. This would decrease the amount of 

ROM needed, since the entries of the tables need not to be stored. A 

disadvantage is, modifying the schedule would cause a complete exchange of 

the calculation procedures. Therefore, the usage of the look-up table was 

considered to be more comfortable. 

A reset of the HpCounter is performed after a regular Initialization message 

(SIA=0).  

The blue part on the right side of figure 15 avoids retries on outputs that were 

shut down. Therefore, it eventually replaces the calculated SIA. 
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5 Hardware-in-the-loop tests with CANoe 
5.1 Reasons for HIL tests 
Until now, all tests were accomplished by using models of the real hardware. In 

order to eliminate failures in the models, it is useful to test the developed 

system with real hardware, too. In the present test environment, the SCLS and 

the bulbs are simulated. Therefore, it would be the optimal way to test the HLD 

with a real SCLS and a real bulb by setting the border between HLD and SCLS 

as shown below. 

 

Figure 16: Method 1 for HIL tests 
 

This would mean that the Simulink model has to control the SCLS via a real SPI 

interface between PC and SCLS. The interface needs to be able to transmit the 

data and receive the answer simultaneously within one simulation step. One 

possible solution, which exists at Continental Temic, is a microcontroller board 

that is connected to the PC via USB. Furthermore, it has an SPI interface to 

control an SCLS. This means that a message would have to be transferred first 

of all via USB and then via SPI. After that, the answer would have to be 

returned in reverse order. 

Since it is hardly possible to achieve this in the correct time intervals, it was 

considered to set the border between the SCLS model and a real bulb. It is not 

possible to increase the sample time, because the SIL simulation needs to have 

the sample time, which is later used in the ECU. Figure 17 visualizes this 

method. 
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Figure 17: Method 2 for HIL tests 
 

By using the shown way, it is possible to test the processing of the read sense 

values even with corrupted signals. Therefore, the real current can be 

measured with a clamp-on ammeter and can be compared to the value 

delivered by the HLD. Furthermore, the reaction of the HLD if it has to control a 

cold bulb can be tested.  

An important advantage is the possibility to test the same C-code, which is later 

executed in the microcontroller.  

A special reason, concerning this thesis, was the opportunity to examine the 

interaction between Matlab/Simulink and CANoe, e.g. timings and possible 

sample rates. 

 

5.2 Test setup 
5.2.1 Interface between Simulink and CANoe 

CANoe is normally used to log and send CAN messages via a CANcab, which 

contains a CAN transceiver. It is possible to create GUIs (so-called panels), 

which allow the user to view the received signals and to change the data that 

should be transmitted. For the exchange of data, CANoe uses so-called 

environment variables (EV). 

There is a special Simulink library, named canoelib, which contains several 

blocks for the data exchange with CANoe. These blocks work similar to the 

‘From/Goto’ blocks and have direct access to CANoe environment variables. 

There is one block that gets a Simulink signal and writes its value to the 

corresponding EV. Another block is used for the other way round.  
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5.2.2 Interface between CANoe and IOcab 

Instead of the CANcab, it is possible to use an IOcab, which has several digital 

and analog in-/outputs. This device is controlled via environment variables, too. 

The IOcab contains: 

• 8 digital inputs or 4 digital outputs (two ports are combined to one output) 

• 4 analog inputs or outputs (each port’s direction is configurable) 

• a PWM module or a capture/compare unit 

 

It is configured in the Port Link Configuration menu of CANoe. The mapping 

between the EVs and the ports has to be done there, too. To control the PWM 

and CAPCOM module, two EVs are needed: One for frequency and the other 

one for duty cycle. The frequency is set to a constant value, while the duty cycle 

depends on the current state of the SCLS. 

 

5.2.3 Description of the complete test setup 

Normally, the SCLS controls the bulb model. For the HIL tests, one of the SCLS 

models outputs is redirected to the CANoe environment variable, which controls 

the duty cycle of the PWM module in the IOcab. This signal can be gripped at a 

box that distributes all IOcab ports. It is used to control a MOSFET, which 

switches a load, e.g. a bulb (55W). 

The current through the bulb leads to a voltage drop at a shunt (0.01Ω), which 

is amplified by an operational amplifier (TLC272). Its output voltage is measured 

by one of the IOcab’s analog inputs. Another input is used to measure the 

supply voltage. After the AD conversion, these values are available as 

environment variables and can be returned to Simulink. 

The SCLS model analyzes them and reacts, for example, with overcurrent or 

undervoltage shutdown. Furthermore, it returns its status to the HLD. 
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Figure 18: HIL test setup 
 

In TargetLink, the simulation mode of the HLD is set to SIL. This means that this 

setup can test how the real C-code of the HLD works with real loads in real-

time, including all possible fixed-point faults and quantization errors. The 

calculation of the SCLS model is done in floating-point arithmetic, since it is still 

a normal Simulink subsystem. 

The real-time behavior can be achieved by inserting a ‘real-time’ block of an 

additional library named rtlib. This increases the priority of the Simulink process 

in Windows. It is even possible to connect digital inputs of the IOcab to the 

LIMP, FLASHER and IGN inputs of the SCLS. This allows activating fail mode 

and switching on emergency light. 

Figure 19 shows the real test setup at the workstation. The oscilloscope is used 

to compare the real voltages to those returned from CANoe. Since the power 

supply is not capable to deliver more than 50A, a battery was connected in 

parallel, in order to buffer the current in the moment of switching the bulb on. 
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Between laptop and oscilloscope, the IOcab and the box, which distributes its 

signals, can be seen. 

 

Figure 19: Real HIL test setup 
 

Both, distribution box and power module were built up at Continental Temic. 

The power module, where the bulb is connected to, is shown in detail in figure 

20. It was designed specially for these HIL tests and contains two amplifier 

circuits, in order to deliver the current in two different measuring ranges. Since 

the analog inputs are capable to measure voltages up to 8V and the typical 

currents were estimated to be about 70A (when switching the bulb on) and 5A 

(in normal operational mode), it was considered to have one range from 0A to 

8A and another one from 0A to 80A.  

By removing the bridge between bulb and shunt, it is possible to simulate open 

load or to connect e.g. a LED or an electronic load. 

 

Figure 20: Power module for HIL tests 
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5.3 Test results 
5.3.1 Accuracy of the current measurement 

First of all, it is important that the current is measured correctly. To verify this, a 

clamp-on ammeter was used to get a reference, to which the results of the 

shunt measurement can be compared. 

The clamp-on ammeter was inserted at the bridge between bulb and shunt and 

connected to channel 4 of the oscilloscope. The voltage at the amplifier with the 

higher range was measured at channel 1. Results can be seen in the figure 

below, where the left plot shows the current at 100% duty cycle and the right 

one at 50%. 

 

Figure 21: Comparison between shunt (ch. 1) and cla mp-on ammeter (ch. 4) 
 

It can be seen that both channels approximately show the same curve. The 

peaks in the right picture are supposedly caused by the operational amplifier, 

but can be neglected, since they are too short to be acquired by the ADC. 

Unfortunately, the IOcab works very inexactly in this frequency range. To get 

the above shown frequency of about 100Hz, the corresponding environment 

variable has to be set to 140Hz. Even with this value, the frequency dithers 

between 90Hz and 110Hz. 

The next possible source of error is the AD conversion in the IOcab. Therefore, 

its results have to be compared with the real current, as shown in figure 22. The 

course of both signals is nearly the same. Only the peak value differs from 

54.2A (real) to about 46A (measured by IOcab). This is due to the sampling 

frequency of the IOcab, which is 3kHz. This makes a period of more than 
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300µs. Since the peak is very short, it is very likely that its largest value is not 

exactly hit. 

The sample time of the SCLS model is 1ms. It is not possible to reduce this 

time, since it is needed for the complete calculation in real-time. The IOcab 

delivers three samples in this time, of which only one is recorded. In order not to 

get a falsification, the current curve was recorded with a smaller Simulink 

model, which can be calculated within every 200µs in real-time. Therefore, all 

values, delivered by the IOcab, can be recorded. 

 

Figure 22: Comparison between real current and ADC values 
 

Channel 2 shows the supply voltage, which has a break-in from 14V to about 

11V in the moment of switching the bulb on, although it was buffered by a 

battery. This indicates that the real current peak could be still higher. 

 

5.3.2 Comparison between real current and bulb mode l 

It is possible to compare the recorded current values to the simulated signal of 

the bulb model, which was used in the previous tests. This can easily be done 

by using TargetLink plots. The comparison is done at different ambient 

temperatures and duty cycles. 

 

5.3.2.1 Normal ambient temperature 

Figure 23 shows the current at room temperature with 100% and 50% duty 

cycle. For the same reason as mentioned above, the measured current does 

measured current 
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not reach the maximal value of the simulated bulb. The decline time of both 

signals is nearly the same. 

 

Figure 23: Comparison between real current (red) an d bulb model (blue) at 20°C 
 

The diagram on the right shows the inexact and varying frequency of the IOcab. 

Furthermore, the output values of the model are a little bit higher than the real 

ones. This indicates that the real temperature is higher than the simulated one. 

This can be caused by the IOcab, too. The correct number of pulses in the 

plotted time interval is 18. As it can be seen, there are 20 pulses of the real 

current. This additional power might have caused the higher temperature. 

 

5.3.2.2 Ambient temperature 70°C 

A higher ambient temperature reduces the current peak. Since this parameter 

can be specified in the bulb model, it is possible to simulate this behavior. The 

results are shown in figure 24. Both signals, real and simulated one, nearly 

have the same amplitudes. 

Conspicuously is the worse resolution of the real signal in contrast to the model. 

The simulation has been executed with a sample time of 200µs. But the values 

stay constant for about 1ms, which leads to bigger stairs in the plot. This 

indicates that Simulink is supplied too slowly with new information. The real-

time simulation causes a higher CPU load. In order to get more system 

ressources for the Simulink solver, the priorities in the Windows schedule 

system are changed. This can be seen, for example, by a significantly higher 

response time (e.g. for changing the active window). It is also possible that the 
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Windows message handling, which does the data exchange between different 

applications, is hampered by the higher priority of the simulation in real-time 

mode. Supposedly, the CPU load in the moment of recording the values of 

figure 24 was too high. Therefore, the data exchange between CANoe and 

Simulink was slowed down. 

 

Figure 24: Comparison between real current (red) an d bulb model (blue) at 70°C 
 

5.3.2.3 Ambient temperature -40°C 

More critical than a high ambient temperature is a low one, because this leads 

to an increase of current. As it can be seen in the simulation results, the current 

can be up to 70A. The real current is limited to about 50A by the power supply. 

 

Figure 25: Comparison between real current (red) an d bulb model (blue) at -40°C 
 

The left part of figure 25 shows that the real current declines faster than the 

simulated one. This denotes a higher temperature of the real bulb. In the model, 

the ambient temperature stays constant at -40°C. It is a ssumed that the 
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ambience is not heated up by the emitted energy. In reality, the glowing bulb is 

going to heat its immediate environment. For example, the glass of the bulb has 

a temperature of at least 600°C in steady state. To si mulate this, the bulb model 

would require a second transfer function, which describes how the glass is 

heated by the emitted energy of the filament. Furthermore, the hot glass again 

emits energy to the ambience. These details are not modeled in the simulation, 

since the currently used model is accurate enough for testing purposes. 

In reality, the hot glass reduces the temperature difference between filament 

and ambience and therefore the transfer of heat. When the filament has 

reached a higher temperature, the discrepancy between model and reality is 

less significant and both currents are nearly the same. 

Finally, it can be seen that the bulb model is useful as a first approximation to 

the real behavior, even in different temperature ranges. 

 

5.3.3 Measurement of delays 

In order to measure the delay time, after which the output of the IOcab’s PWM 

module is updated after a changing value in Simulink, the time between a 

logical one at LIMP and the activation of emergency light was examined. 

Furthermore, the behavior of the SCLS model in fail mode can be tested, too. 

Therefore, the IGN input is permanently set to logical one, by connecting the 

supply voltage to a digital input of the IOcab. To start the test and activate 

emergency light, the LIMP input is connected to supply voltage, too. 

Normally, 10ms after a positive edge at LIMP, the SCLS should switch on 

emergency light, as shown in figure 26, where the following signals are 

recorded: 

• The LIMP input of the SCLS model in Simulink (diagram on the upper left). 

• The current calculated by the bulb model (diagram on the lower left). 

• The voltage at the digital input of the IOcab (channel 2 of the oscilloscope). 

• The current measured by the shunt (channel 1 of the oscilloscope). 
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Figure 26: Measurement of the delay time 
 

As it can be seen on the oscilloscope plot on the right, the time to activate the 

real bulb was 16.3ms. Normally, the complete time should be equal to the 

debounce time (i.e. 10ms), as shown in the left diagram. The measured time 

leads to a delay time of 6.3ms caused by reading in the input, transferring the 

environment variables from CANoe to Simulink and back and updating the duty 

cycle of the IOcab.  

This delay time varies from 2ms up to 11.8ms. One reason for these high and 

differing times may be the Windows message handling. Furthermore, it is 

possible that the IOcab’s PWM module works similar to the one of the SCLS 

and uses a timer, which determines the switch-on time. This would mean that it 

can take one period of this timer until the new value is valid. 

 

6 Considerations for future projects 
To conclude this paper, some steps, which could simplify or shorten similar 

projects in the future, should be mentioned. For this purpose, the most time-

consuming stages are examined in detail. These are the development of the 

SCLS model and the tests of all models. 

Since a specification sheet of the SCLS existed at least a year before starting 

the development of the HLD, it would have been possible to model the SCLS 

much earlier. Perhaps, it would even be possible, to let such models develop by 

student-trainees that got an introduction to Matlab/Simulink. Since the 

debounce time debounce time delay time 

complete time 

complete time 
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development can start much earlier, it would not matter if it is slightly delayed 

due to the lack of skills of the trainee. 

Another problem concerns the different simulation modes in TargetLink. A 

comparison between MIL and SIL simulation is only a verification of the fixed-

point arithmetic. It is not verified whether the model itself works according to the 

specification. For these tests, it is necessary, to include additional blocks, which 

have to be removed for the SIL tests. Therefore, both methods require different 

files, which can lead to inconsistencies.  

Testing is a big problem due to the huge complexity of the model’s interfaces 

and the test vectors. Tools like CTE try to simplify the handling of this 

complexity. Nevertheless, even in CTE it is hard not to loose the overview if the 

model grows larger. Conventional tests specify signals that have to be changed 

at distinct points of time. Model-based test cases require the value of every 

signal at every time step. A tool, which could generate test vectors out of normal 

test sequences, would be a great advantage. The tool has to consider special, 

programmable rules, e.g. that the watchdog bit has to be toggled every 75ms, 

even if the interval between two instructions in the test specification is longer. 

Hence, it would be possible e.g. to switch a bulb on at a defined point of time 

and switch it off after one minute, without specifying the time steps for toggling 

the watchdog bit. This would lead to an enormous simplification in the creation 

of test vectors. 

Due to the growing importance of model-based development, it can be 

expected that such tools will be developed in the future. 
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